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1 Bergman spaces

1.1 Initial look at Bergman spaces

1.1 Definition. — The Bergman space of the Disc, B2(D), is defined by : B2(D) := Hol(D) ∩ L2(D)

1.2 Proposition. — B2(D) is an Hilbert space for the inner product :
〈f ; g〉B2(D) := 〈f ; g〉L2(D) =

s
D f(z).g(z)|dz|

Before beginning the demonstration, a certain property coming from holomorphity must be obtained.
For f ∈ B2(D), for z∈ D, ∀0 < r < 1− |z| the mean value property gives us :

f(z) =
1

2π

∫ 2π

0
f(reiθ + z)dθ

Thus, ∫ 1−|z|

0
f(z)dr =

(1− |z|)2

2
f(z) =

1

2π

∫ 1−|z|

0

∫ 2π

0
f(reiθ + z)drdθ

⇒ f(z) =
1

π(1− |z|)2

x

D(z,1−|z|)

f(x+ iy)dxdy

⇒ |f(z)| ≤ 1

πd(z;DC)2

x

D(z,1−|z|)

|f(x+ iy)|dxdy

Using Cauchy-Schwarz inequality, we obtain :

|f(z)| ≤ 1

πd(z;DC)2
‖f‖B2(D(z,1−|z|)).

√
π.d(z;DC)

So we have :

|f(z)| ≤ 1√
πd(z;DC)

‖f‖B2(D) (1)

This equation will be important for the proof of the proposition, but it also shows other properties
that B2(D) possesses.

Proof.
B2(D) is a vectorial subspace of L2(D). We will show that B2(D) is closed for the ‖.‖L2(D) norm.

Let {fn}n ∈ B2(D)N that converges in ‖.‖L2(D) norm towards f ∈ L2(D). Let K be a compact of D.

With (1), we obtain : ‖fn‖L∞(K) ≤ 1√
πd(K;DC)

‖fn‖L2(D)

Thus, {fn}n|K is a Cauchy sequence in L∞(K). Since this space is closed, {fn}n converges uniformly
on every compact of D towards f . Since fn is holomorphic ∀n and converges uniformly on every
compact, its limit is holomorphic. Hence, f ∈ Hol(D) ∩ L2(D) = B2(D).

1.3 Proposition. — ∀z ∈ D,
δz : B2(D) → C

f 7→ f(z)
is a bounded operator with ‖δz‖ ≤ 1√

πd(z;DC)

Since B2(D) is an Hilbert space, Riesz lemma gives a kz ∈ B2(D) such as : f(z) =< kz; f >B2(D)

∀f ∈ B2(D)
We note KB2(D)(z;w) = kz(w). Thus, f(z) =

s
DK(z;w)f(w)dxdy, for every f ∈ B2(D) ∀z ∈ D.

KB2(D) is called the Reproducing Kernel of B2(D). B2(D) is then called a Reproducing Kernel
Hilbert Space (RKHS).
KB2(D) is also called the Bergman Kernel of D.
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1.1 Initial look at Bergman spaces

Before looking a bit further at the Reproducing Kernel, a few other properties of the Bergman
spaces need to be seen.

1.4 Proposition. — {zn.
√

n+1
π } is an orthonormal basis of B2(D).

Proof. We have : 〈zn; zm〉B2(D) =
∫ 1

0

∫ 2π
0 rnrmeiθ(m−n)rdrdθ =

∣∣∣∣ 2π
n+m+2 = π

n+1 if m=n
0 else.

And if we have 〈zm; f〉B2(D) = 0, ∀n ≥ 0 , then for f(z) =
∑

n≥0 anz
n with absolute convergence on

D, we obtain
x

D

zmf(z)|dz| =
x

D

zm
∑
n≥0

anz
n|dz| =

∑
n≥0

an
x

D

zmzn|dz| = an
π

n+ 1
= 0, ∀n ≥ 0.

Thus, f ≡ 0.

The arguments used to show that B2(D) is an Hilbert space with a Reproducing Kernel can also
be used for Bergman spaces of other domains.

1.5 Proposition. — Let Ω be an open and simply connected region of C, Ω 6= C.
Then, B2(Ω) is an Hilbert space with a Reproducing Kernel.

1.6 Theorem. Riemann Mapping Theorem — If Ω is an open and simply connected region of C that isn’t
C, then there exists ϕ : Ω→ D a biholomorphism.
This biholomorphism is uniquely determined if we fix the image of two points.

With this theorem, for f, g ∈ B2(Ω), we have :

〈f ; g〉B2(Ω) =
x

Ω

f(z)g(z)dxdy =
x

D

f(ϕ−1(w))g(ϕ−1(w))|(ϕ−1)′(w)|2dx′dy′

1.7 Proposition. — For ϕ : Ω→ D a biholmorphism,
U : B2(Ω) → B2(D)

f 7→ (f ◦ ϕ−1).(ϕ−1)′

is an unitary map : 〈Uf ;Ug〉B2(D) = 〈f ; g〉B2(Ω),
and U−1h = (h ◦ ϕ).ϕ′.

1.8 Note. B2(C) = {0}, as an holomorphic function in B2(C) verifies :

f2(z) =
2

1−R2
.

1

2π

∫ R

0

∫ 2π

0
f2(r.eiθ + z)r.drdθ, ∀R > 0, ∀z ∈ C

⇒ |f(z)|2 ≤ 1

π.(1−R2)
.
x

C

|f(x+ iy)|2dxdy , ∀R > 0, ∀z ∈ C

⇒ f(z) = 0 , ∀z ∈ C

1.9 Note. With an unitary U between B2(Ω) and B2(D), {U−1(zn.
√

n+1
π )}n is an orthonormal basis of

B2(Ω).
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1.1 Initial look at Bergman spaces

1.10 Proposition. — The Reproducing Kernel KB2(Ω) is unique.
If there exists K̃ : Ω× Ω→ C such as :
i)K̃(z; .) ∈ B2(Ω)

ii)f(z) = 〈K̃(z; .); f〉B2(Ω), ∀z ∈ Ω,∀f ∈ B2(Ω)

then K̃ ≡ KB2(Ω).

Proof. We have : K̃(z;w) = 〈KB2(Ω)(w; .); K̃(z; .)〉 = 〈K̃(z; .);KB2(Ω)(w; .)〉 = KB2(Ω)(w; z). And

KB2(Ω)(w; z) = 〈KB2(Ω)(z; .);KB2(Ω)(w; .)〉 = 〈KB2(Ω)(w; .);KB2(Ω)(z; .)〉 = KB2(Ω)(z;w).

1.11 Note. We also saw that KB2(Ω)(z;w) = KB2(Ω)(w; z).
Thus, KB2(Ω)(z;w) is holomorphic in z and antiholomorphic in w.

1.12 Proposition. — For {ψn}n an orthonormal basis of B2(Ω), we have :

KB2(Ω)(z;w) =
∑
n≥0

ψn(w).ψn(z)

Proof. KB2(Ω)(z; .) is in B2(Ω). Thus, KB2(Ω)(z;w) =
∑

n≥0 ψn(w).bn,z.

And bn,z = 〈ψn;KB2(Ω)(z; .)〉 = 〈KB2(Ω)(z; .);ψn〉 = ψn(z)

1.13 Note. On a Reproducing Kernel Hilbert Space, the series
∑

n≥0 ψn(w).ψn(z) is independant of the
orthonormal basis chosen.
Thus, knowing explicitly an orthonormal basis is enough to determine the reproducing kernel.
Also, KB2(Ω)(z; z) is always real positive.

1.14 Proposition. — We can now calculate the Bergman Kernel of the disc :

KB2(D)(z;w) =
∑
n≥0

(zw)n.
n+ 1

π
=

1

π
.

1

(1− wz)2
(2)

1.15 Proposition. — For Ω1,Ω2 open simply connected regions of C, for ϕ : Ω1 → Ω2 a biholomorphism,
and U : B2(Ω1)→ B2(Ω2) the associated unitary, we have :

KB2(Ω1)(z;w) = kΩ1
z (w) = (U−1kΩ2

ϕ(z))(w).ϕ′(z) = ϕ′(z).KB2(Ω2)(ϕ(z);ϕ(w)).ϕ′(w)

1.16 Note. The Bergman kernel of the disc has no zeroes.
KB2(D)(z; z) has a minimum of 1

π and grows towards infitiny when z goes towards ∂D.
For ϕ : Ω→ D a biholomorphism, ϕ′ has no zeroes on Ω, so the Bergman kernel of Ω has no zeroes too.
However, KB2(Ω)(z; z) may not grow towards infinity for z → ∂Ω, depending on the behaviour of |ϕ′(z)|2,
which depends on the shape of Ω.
We also have :

KB2(Ω)(z;ϕ
−1(0)) =

1

π
.
ϕ′(z).ϕ′(ϕ−1(0))

(1− ϕ(ϕ−1(0)).z)2
=
ϕ′(z).ϕ′(ϕ−1(0))

π

1.17 Theorem. Bergman Projection —
Let B : L2(Ω)→ B2(Ω) be the orthogonal projection over B2(Ω), and let kΩ

z (.) = KB2(Ω)(z; .) ∈ B2(Ω).
Thus, ∀f ∈ L2(Ω), ∀z ∈ Ω, Bf ∈ B2(Ω) and :

Bf(z) = 〈kΩ
z ;Bf〉B2(Ω) = 〈B∗kΩ

z ; f〉L2(Ω) = 〈BkΩ
z ; f〉L2(Ω)

⇒ Bf(z) = 〈kΩ
z ; f〉L2(Ω)

See [7], Classical spaces of holomorphic functions, Ch 1-2.
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1.18 Note. The Bergman space Bp(Ω), for 0 < p <∞ can also be defined similarly to B2(Ω). For p 6= 2,
Bp is only a Banach space, but shares certain properties with B2.
However, this internship focuses on operators on certain Hilbert spaces, so the Bp theory won’t be devel-
oped.

2 Hardy spaces

2.1 Initial look at Hardy Spaces

2.1 Definition. — The Hardy space of the disc, H2(D), is defined by :

H2(D) := {f ∈ Hol(D) such as f(z) =
∑
n≥0

an.z
n with

∑
n≥0

|an|2 <∞}

For f, g ∈ H2(D), f(z) =
∑

n≥0 an.z
n, g(z) =

∑
n≥0 bn.z

n, we define :

〈f ; g〉H2(D) :=
∑
n≥0

an.bn

And ‖f‖H2(D) :=
√∑

n≥0 |an|2.

With these definitions, H2(D) is a normed vectorial space.

We notice that the map :
T : l2 → H2(D)

{an}n 7→ (z 7→
∑

n≥0 an.z
n)

is a bijective isometry from l2 to

H2(D).
This gives us the following result :

2.2 Theorem. — (H2(D), 〈.; .〉H2(D)) is an Hilbert space.

2.3 Proposition. — For f ∈ H2(D), f(z) =
∑

n≥0 an.z
n, the function : f̃ : ∂D → Ĉ

z 7→
∑

n≥0 an.z
n

belongs to L2(∂D).

The next theorem gives other expressions of the inner product of H2(D) that will be very useful
to show that the Hardy space shares similar properties with the Bergman space.

2.4 Theorem. — For f, g ∈ H2(D), we have :

〈f ; g〉H2(D) = lim
r→1−

(
1

2π
.

∫ 2π

0
f(r.eiθ).g(r.eiθ)dθ) = 〈f̃ ; g̃〉L2(∂D) (3)

With this, we can now define the Hardy space of an open space Ω, and prove that these Hardy
spaces are Reproducing Kernel Hilbert Spaces.

2.5 Definition. — Let Ω be an open simply connected space, Ω 6= C. We have a biholomorphism
ϕ : D→ Ω.
For 0 < r < 1 we define : ϕ(γr) : t ∈ [0; 2π] 7→ ϕ(r.ei.t) ∈ Ω.
Thus, for g : Ω→ C, we have :

∫
ϕ(γr)

g(z)|dz| :=
∫ 2π

0 g(ϕ(r.eiθ)).|ϕ′(r.eiθ)|dθ
The Hardy space of Ω, H2(Ω), is defined by :

H2(Ω) := {f ∈ Hol(Ω) such as lim
r→1−

(

∫
ϕ(γr)

|f(z)|2|dz|) <∞}

5



2.1 Initial look at Hardy Spaces

At first, H2(Ω) is a vectorial space.
Since ϕ : D → Ω is a biholomorphism, ϕ′ : D → C is holomorphic and has no zeroes. Thus, since D
is simply connected, there exists φ ∈ Hol(D) such as ϕ′ = exp ◦ φ. Thus, Φ : z ∈ D 7→ exp(φ(z)

2 ) is
holomorphic and verifies Φ(z)2 = ϕ′(z)⇒ |ϕ′| = Φ.Φ
Thus, the map V : f ∈ H2(Ω) 7→ (f ◦ ϕ).Φ ∈ H2(D) is well defined and bijective, thanks to theorem
2.4. It allows us to define an inner product 〈; 〉H2(Ω) from 〈; 〉H2(D) that makes H2(Ω) an Hilbert space
for which V is an unitary bijective map.
The inverse of V is V −1 : f ∈ H2(D) 7→ (f ◦ ϕ−1).Φ̃ ∈ H2(Ω), with Φ̃ ∈ Hol(Ω) such as Φ̃2 = (ϕ−1)′.

For f, g ∈ H2(Ω), we have :

〈f ; g〉H2(Ω) := 〈V f ;V g〉H2(D) = lim
r→1−

(
1

2π

∫
ϕ(γr)

f(z).g(z)|dz|)

‖f‖H2(Ω) := ‖V f‖H2(D) =

√
1

2π
lim
r→1−

(

∫ 2π

0
|f(ϕ(r.eiθ))|2.|Ψ(r.eiθ)|2dθ) =

√
1

2π
lim
r→1−

(

∫
ϕ(γr)

|f(z)|2|dz|)

‖f‖2H2(Ω) =
1

2π
lim
r→1−

(

∫ 2π

0
|f(ϕ(r.eiθ))|2.|Ψ(r.eiθ)|2dθ) =

1

2π
sup

0<r<1
(

∫ 2π

0
|f(ϕ(r.eiθ))|2.|Ψ(r.eiθ)|2dθ)

As of now, the definition of the elements of H2(Ω) depends on the choice of the biholomorphism ϕ.
We will show later that the set H2(Ω) doesn’t depend on the choice of ϕ. The inner product on H2(Ω)
does depend on the choice of ϕ, but it will be shown that they are all equivalent.

We will now show that H2(D) is a RKHS.

2.6 Proposition. — ∀z ∈ D,
δz : H2(D) → C

f 7→ f(z)
is a bounded operator with ‖δz‖ ≤ 1√

πd(z;DC)

Thus, H2(D) possesses a Reproducing Kernel KH2(D), with f(z) = 〈KH2(D)(z; .); f〉H2(D), ∀f ∈ H2(D),
∀z ∈ D.

Proof. Let f ∈ H2(D), z ∈ D. Using Cauchy’s formula, we have :

f(z) =
1

2iπ

∫
γr

f(w)

w − z
dw =

1

2π
.

∫ 2π

0

f(r.eiθ)

r.eiθ − z
r.eiθ.dθ for |z| < r < 1 ,

⇒ |f(z)| ≤

√
1

2π
.

∫ 2π

0
|f(r.eiθ)|2dθ.

√
1

2π
.

∫ 2π

0

r2

|r.eiθ − z|2
dθ ≤ ‖f‖H2(D).

r

r − |z|

⇒ |f(z)| ≤ ‖f‖H2(D).
1

1− |z|
(4)

2.7 Note. A similar proof can be done for H2(Ω) by considering integrals on ϕ(γr) for 0 < r − |z| <
d(z; ΩC) instead of integrals on γr for 0 < r − |z| < 1− |z|

For H2(C) := {f ∈ Hol(C) such as sup0<r<∞(
∫
γr
|f(z)|2|dz|) <∞}, we have H2(C) = {0}.

An f in H2(C) would verify |f(z)| ≤ ‖f‖H2(C).
r

r−|z| ∀0 < r − |z| ⇒ |f | ≤ 2.‖f‖H2(C) < ∞ ⇒ f is
bounded on C⇒ f is constant on C⇒ f ≡ 0.
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2.2 Reproducing Kernel of a Half-plane and of a Strip

With the same arguments used for the Bergman Kernel, we now obtain :

2.8 Proposition. —
For {ψn}n an orthonormal basis of H2(Ω), we have :

KB2(Ω)(z;w) =
∑
n≥0

ψn(w).ψn(z)

In the case of H2(D), we have :

KB2(D)(z;w) =
∑
n≥0

(w.z)n =
1

1− w.z
(5)

KB2(D) is called the Cauchy-Szegö kernel.

2.9 Proposition. — For Ω an open simply connected space, ϕ : Ω→ D a biholomorphism, Ψ ∈ Hol(D)
such as Ψ2 = ϕ′, the reproducing kernel of H2(Ω) verifies :

KH2(Ω)(z;w) = Ψ(z).KH2(D)(ϕ(z);ϕ(w)).Ψ(w)

2.10 Proposition. — Since 1
π .KH2(D)(z;w)2 = KB2(D)(z;w) and Ψ(z)2 = ϕ′(z), for any Ω open and

simply connected we have :
1

π
.KH2(Ω)(z;w)2 = KB2(Ω)(z;w)

2.11 Proposition. — H2(D) ⊂ B2(D), but H2(D) 6= B2(D)

Proof.
We have H2(D) = {f ∈ Hol(D) such as f(z) =

∑
n≥0 an.z

n with {an}n ∈ l2} and B2(D) = {f ∈

Hol(D) such as f(z) =
∑

n≥0 bn.z
n.
√

n+1
π with {bn}n ∈ l2}

For {an}n ∈ l2, {an.
√

π
n+1} ∈ l

2.

But for bn = 1
n+1 , {bn}n ∈ l2 but {bn.

√
n+1
π }n /∈ l2, so for f(z) =

∑
n≥0 bn.z

n.
√

n+1
π , f ∈ B2(D) but

f /∈ H2(D).

2.12 Note. The Bergman space Hp(Ω)1, for 0 < p < ∞ can also be defined similarly to H2(Ω). For
p 6= 2, Hp is only a Banach space, but shares certain properties with H2.
However, this internship focuses on operators on certain Hilbert spaces, so the Hp theory won’t be devel-
oped.

2.2 Reproducing Kernel of a Half-plane and of a Strip

We define Ω1 := {z ∈ C such as Re(z) > 0} a half-plane, and Ω2 := {z ∈ C such as −π
2 < Im(z) < π

2 }
a strip of width π.
ψ1 : z ∈ Ω1 7→ 1−z

1+z ∈ D is a biholomorphism as it is an homography that sends iR to ∂D and that
sends 1 to 0.
ψ2 : z ∈ Ω2 7→ exp(z) ∈ Ω1 is a biholomorphism too.
We have ψ′1(z) = 2

(1+z)2 , ψ′2 = exp(z), and ψ3 := ψ1 ◦ ψ2(z) = 1−ez
1+ez = tanh( z2) with ψ′3(z) = 1

2 cosh( z
2

)2

1See [6], Theory of Hp Spaces.
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With this, we can now compute the reproducing kernels for these two spaces :

KH2(Ω1)(z, w) = (ψ′1)
1
2 (z).KH2(D)(ψ1(z);ψ1(w)).(ψ′1)

1
2 (w) =

√
2

(1 + z)

√
2

(1 + w)

1

1− 1−w
1+w

1−z
1+z

=
2

(1 + w)(1 + z)− (1− w)(1− z)
=

2

2(w + z)
=

1

w + z

With Proposition 2.10 we obtain : KB2(Ω1)(z, w) = 1
π

1
(w+z)2

We also have : KH2(Ω1)(z, z) = 1
2Re(z)

KB2(Ω2)(z, w) =
1

π

1

2cosh(w2 )

1

2 cosh( z2)

1

(1− tanh(w2 ) tanh( z2))2
=

1

4π

1

(cosh(w2 ) cosh( z2)− sinh(w2 ) sinh( z2))2

=
1

4π

1

(cosh(w2 ) cosh( z2)− sinh(w2 ) sinh( z2))2
=

1

4π

1

(cosh(w−z2 ))2

With Proposition 2.10 we obtain : KH2(Ω2)(z, w) = 1
2

1
cosh(w−z

2
)

We also have : KH2(Ω2)(z, z) = 1
2

1
cosh(iIm(z)) = 1

2 cos(Im(z))

- Now that a primary description of the Hardy and Bergman spaces has been made, we will focus on
the RKHS theory before looking at certain operators on B2 and H2.

3 Reproducing Kernel Hilbert Space theory

3.1 First properties of Reproducing Kernel Hilbert Spaces and Kernel Functions

3.1 Definition. Let X be a set, and let H be a Hilbert space of functions from X to C.

If
δx : H → C

f 7→ f(x)
is bounded for all x ∈ X, then the Riesz Lemma applied to δx gives us kHx in H

such as 〈kHx ; .〉H = δx(.).

This gives us the Reproducing Kernel of H,
KH : X ×X → C

(x; y) 7→ kHx (y)
, who verifies :

i) KH(x; .) ∈ H, ∀x ∈ X
ii) ∀f ∈ H, ∀x ∈ X, f(x) = 〈KH(x; .); f〉H
The Hilbert space H is then called a Reproducing Kernel Hilbert Space (RKHS).

3.2 Proposition. — Let H be a RKHS with a reproducing kernel KH . Then, we have :
- KH(x; y) = KH(y;x), ∀x, y ∈ X
- KH is unique : if there is K̃ : X ×X → C that verifies i) and ii), then K̃ = KH .
- ∀x, y ∈ X, KH(x; y) = kHx (y) = 〈kHy ; kHx 〉H = 〈kHx ; kHy 〉H .
- Let {ψn}n be an orthonormal basis of H. Then KH(x; y) =

∑
n≥0 ψn(x).ψn(y)

This series doesn’t depend on the orthonormal basis chosen.
- KH(x;x) =

∑
n≥0 |ψn(x)|2 ≥ 0, and

√
KH(x;x) = ‖kHx ‖H = ‖δx‖.

- ∀N ≥ 0, ∀a0, . . . , aN ∈ C, ∀z0, . . . , zN ∈ X,

N∑
n,m=0

an.am.KH(zn; zm) =

N∑
n,m=0

an.am.〈kHzn ; kHzm〉H = 〈
N∑
n=0

an.kHzn ;

N∑
n=0

an.kHzn〉H = ‖
N∑
n=0

an.k
H
zn‖

2
H ≥ 0

- If H’ is a closed subspace of H, then H’ is also a RKHS.
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3.1 First properties of Reproducing Kernel Hilbert Spaces and Kernel Functions

∀x ∈ X, kH
′

x = PkHx , with P the orthogonal projection on H’.
- {kHx }x is dense in H. If ∀x ∈ X, 〈kHx ; f〉H = 0, then f(x) = 0 ∀x ∈ X ⇒ f = 0.

Proof. Several points have already been proved in the case of a Bergman or Hardy space, and the
proof for a general RKHS H is the same.
Two points are left to prove :
- ‖δx‖ = sup‖f‖H=1|f(x)| = sup‖f‖H=1|〈kHx ; f〉H | ≤ 1.‖kHx ‖H , and δx(kHx ) = 〈kHx ; kHx 〉H = ‖kHx ‖2H .
- Let H’ be a closed subspace of H, and let P be the orthogonal projection on H’.
Then, ∀f ∈ H ′,∀x ∈ X, PkHx ∈ H ′ and 〈PkHx ; f〉H = 〈kHx ;Pf〉H = 〈kHx ; f〉H = f(x).

3.3 Note. Knowing that {zn.n+1
π }n is an orthonormal basis of B2(D), and that {zn}n is an orthonormal

basis of H2(D), we obtained KB2(D)(z;w) = 1
π

1
(1−z.w)2 and KH2(D)(z;w) = 1

(1−z.w) .

We now know that for z ∈ D, ‖δB
2(D)

z ‖ = 1
π

1
(1−|z|2)2 and ‖δH

2(D)
z ‖ = 1

(1−|z|2)
.

We will now try to look at the concept in the converse way :
Given a set X, and a function K : X ×X → C that has a specific property, does there exist an Hilbert
space H of functions from X to C such as K is the reproducing kernel of H ?

3.4 Definition. Let X be a set. A function K : X ×X → C that verifies :
i) ∀N ≥ 0, ∀a0, . . . , aN ∈ C, ∀z0, . . . , zN ∈ X,

∑N
n,m=0 an.am.K(zn; zm) ≥ 0

is called a Kernel function on X.

3.5 Note. The kernel function property is equivalent to : ∀n ≥ 0, ∀x0, . . . , xn ∈ X, (K(xi, xj))i,j is
self-adjoint positive.
In this case, we say that (K(x, y)) is self-adjoint positive.
In the case of the Bergman and Hardy spaces, we even saw that their reproducing kernels had no zeroes,
which means that the matrixes (K(xi, xj))i,j are all self-adjoint definite positive.
However, this is not always true.

3.6 Theorem. Let X be a set. Let K be a kernel function on X.
Then, there exists an unique Hilbert space H(K) of functions from X to C for which K is its reproducing
kernel.

We will first see two lemmas about RKHS to help proving the fact that the Hilbert space that will
be built is an Hilbert space of functions from X to C, and that it is unique.

3.7 Lemma. Let H be a RKHS on X. Let {fn}n ∈ HN. If fn →‖.‖Hn→∞ f , then fn(x)→n→∞ f(x) ∀x ∈ X,
as δx is a bounded operator ∀x ∈ X.

3.8 Lemma. Let H1, H2 be RKHS on X, with KH1 = KH2 .
Then H1 = H2 and ‖.‖H1 = ‖.‖H2 .

Proof. Since KH1 = KH2 = K, we have kH1
x = kH2

x = kx, ∀x ∈ X. As {kx}x is dense in H1 and H2,
for f ∈ Hi, we have a countable sequence (αy)y such as f(x) =

∑
y∈X αy.ky(x).

Thus, ‖f‖2Hi =
∑

y

∑
z αy.αz.〈ky; kz〉Hi =

∑
y

∑
z αy.αz.K(y; z).

So H1 = V ect({kx}x)
‖.‖H1 = V ect({kx}x)

‖.‖H2 = H2, and ‖.‖H1 = ‖.‖H2 .

See [5], An introduction to the theory of Reproducing Kernel Hilbert Spaces, Ch 1-5.
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3.2 Interpolation with kernel functions

Proof. Theorem
For K a kernel function, for x, y ∈ X, we note kx(y) = K(x; y). Thus, V = V ect({kx}x) is a vectorial
space of functions from X to C.
〈kx; ky〉 = K(y;x) is an inner product on V, thanks to the property of the Kernel function. Even if
(K(x, y)) is only self-adjoint positive, we will obtain definiteness on 〈; 〉 thanks to the diagonalization
of this matrix on a finite set {x1, . . . , xn}.
Thus, H(K) = V

〈.;.〉 is an Hilbert space and a space of functions from X to C, because convergence
for ‖.‖ on V implies ponctual convergence.
Thus, H(K) is an RKHS for which K is a reproducing kernel. The second lemma gives the uniqueness
of such a H(K).

3.9 Example. Let f : X → C a function. For K(x, y) = f(x).f(y), (K(x, y)) is self-adjoint positive,
H(K) = V ect(f), and if f 6= 0 then ‖f‖H(K) = 1.
This exemple also shows that any set X possesses kernel functions.

- For (αi)i ∈ C, (xi)i ∈ X we have
∑

i,j αi.αj .K(xi, xj) = |
∑

i αi.f(xi)|2 ≥ 0, so (K(x, y)) is in-
deed self-adjoint positive. With theorem 3.6, we have a RKHS H(K) whose reproducing kernel is K.
- ∀y ∈ X, ky(.) = f(y).f(.), so ky ∈ V ect(f) ⇒ H(K) = V ect(f), as V ect({ky}y) = V ect(f) is dense
in H(K).
- Let y ∈ X such as f(y) 6= 0. Then |f(y)|2.‖f‖2H(K) = ‖f(y).f‖2H(K) = ‖ky‖2H(K) = K(y, y) = |f(y)|2.
So ‖f‖H(K) = 1.

3.2 Interpolation with kernel functions

Let X be a set, and let K be a kernel function on that set. Let H(K) be the RKHS associated to K.
Let F = {x1, . . . , xn} ⊂ X a finite subset. We define HF := V ect({kx1 , . . . , kxn}), and PF the orthog-
onal projection onto HF .
We want to look at certain properties of that subspace HF , and use elements of this space to interpo-
late or approximate functions in H(K).

3.10 Note. —
- dim(HF ) ≤ n.
- dim(HF ) < n⇔ ∃(α1, . . . , αn) 6= (0, . . . , 0) such as

∑
αi.kxi = 0.

⇔ ∃(α1, . . . , αn) 6= (0, . . . , 0) such as ∀f ∈ H(K), 0 = 〈
∑
αi.kxi ; f〉 =

∑
αi.f(xi)

- g ∈ H⊥F ⇔ g(xi) = 〈kxi ; g〉 = 0, ∀1 ≤ i ≤ n.
- Thus, PF (g)(xi) = g(xi), ∀1 ≤ i ≤ n, ∀g ∈ H(K).

3.11 Proposition. — Let F = {x1, . . . , xn} ⊂ X, {λ1, . . . , λn} ⊂ C. If there exists g ∈ H(K) that inter-
polates {λi}i on {xi}i, then PF (g) is the function of minimal norm in H(K) that does the interpolation.

Proof. For g1 that also interpolates the values, we have (g1 − PF (g)) ∈ H⊥F .
Thus, we obtain ‖g1‖2 = ‖g1 − PF (g)‖2 + ‖PF (g)‖2 ≥ ‖PF (g)‖2.

3.12 Proposition. — Let F = {x1, . . . , xn} ⊂ X.
If (α1, . . . , αn) ∈ Ker((K(xi, xj))i,j) then

∑
αi.kxi = 0

Proof. For f =
∑
αi.kxi , we have :

‖f‖2 =
∑

i,j αi.αj .〈kxi ; kxj 〉 =
∑

i,j αi.αj .K(xi;xj) = (α1, . . . , αn).(K(xi, xj))i,j .(α1, . . . , αn)t = 0
⇒ f = 0.

3.13 Note. For (α1, . . . , αn), (β1, . . . , βn) such as (K(xi, xj))i,j .(α1, . . . , αn)t = (K(xi, xj))i,j .(β1, . . . , βn)t,
then

∑
αi.kxi =

∑
βi.kxi
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3.2 Interpolation with kernel functions

3.14 Theorem. Interpolation Theorem in a RKHS
Let H be a RKHS on a set X. Let F = {x1, . . . , xn} ⊂ X, {λ1, . . . , λn} ⊂ C.
There exists g ∈ H that interpolates {λi}i on {xi}i ⇔ (λ1, . . . , λn) ∈ Im((K(xi, xj))i,j).
Then, for (α1, . . . , αn) such as (K(xi, xj))i,j .(α1, . . . , αn)t = (λ1, . . . , λn), h =

∑
i αi.kxi is the function

in H of minimal norm that interpolates the values.
And ‖h‖2 =

∑
i λi.αi.

Proof. If g is a solution, PF (g) is the solution of minimal norm in H.
⇒
Suppose that we have g a solution. PF (g) =

∑
i βi.kxi ⇒ λi =

∑
j βj .kxj (xi), ∀1 ≤ i ≤ n. ⇒

(K(xi, xj))i,j .(β1, . . . , βn) = (λ1, . . . , λn).
⇐
If (λ1, . . . , λn) ∈ Im((K(xi, xj))i,j), then for (α1, . . . , αn) such as (K(xi, xj))i,j .(α1, . . . , αn)t = (λ1, . . . , λn)t,
h =

∑
i αi.kxi interpolates the values.

Furthermore PF (h) = h is the function of minimal norm of the interpolates the values.
And ‖h‖2 =

∑
i,j αi.αj .K(xi, xj) = (α1, . . . , αn).(K(xi, xj))i,j .(α1, . . . , αn)t = (λ1, . . . , λn).(α1, . . . , αn)t =∑

i λi.αi.

3.15 Note. (K(xi, xj))i,j is invertible⇔ ∀λ1, . . . , λn ∈ C, {λ1, . . . , λn} can be interpolated on the {xi}i
⇔ {kxi} are independant.

3.16 Theorem. Let H be a RKHS on X. Let f : X → C a function.
Then f ∈ H ⇔ ∃c > 0 such as c2K(x, y)− f(x).f(y) is a kernel function on X.
⇔ ∃c > 0 such as for every N, for every {x1, . . . xN}, ∃h ∈ H with ‖h‖ ≤ c and f(xi) = h(xi)
∀1 ≤ i ≤ N .

This theorem gives a necessary and sufficien condition for a function to be in a RKHS only with
interpolation by functions in H or with kernel functions, both of them being ponctual conditions.
For Hilbert spaces like Bergman spaces, we have a ponctual critera on every finite subset of Ω that
says if a function f is holormorphic and L2 on Ω.
However, the computation required to verify such a critera isn’t easy, even if the reproducing kernel
has an explicit formula like for H2(D) or B2(D).
Since the reproducing kernels in B2(Ω) and H2(Ω) have no zeroes, for every set of complex values
and for every set of points in Ω, there are functions in these spaces that interpolate these values on
the chosen points.
As ploynomials are in H2(D) and B2(D), they directly give functions that interpolates a set of values
on a set of specific points in the case of the disc, and the unitary maps linking two Bergman spaces
(respectively Hardy) generalizes that property for every Ω open and simply connected.
Thus, we had another way to obtain the interpolation properties on Bergman and Hardy spaces, but
doing it with the reproducing kernel gives interpolation functions with more properties (like mini-
mizing the norm).

3.17 Theorem. Aronszajn
Let H1,H2 be two RKHS on X.
H1 ⊂ H2 ⇔ ∃c > 0 such as c2.K2 −K1 is a kernel function. In this case, ‖f‖2 ≤ c.‖f‖1, ∀f ∈ H1.
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Proof. Only one sub-part of the theorem will be proven, as it illustrates well the importance of being
a RKHS.
If H1 ⊂ H2, T : f ∈ H1 7→ f ∈ H2 is well defined. Let (fn)n ∈ HN

1 who converges towards f ∈ H1 for
‖.‖1 and towards g ∈ H2 for ‖.‖2. So (fn, T (fn))n converges towards (f, g) in H1×H2. As H1 and H2

are RKHS, norm convergence implies ponctual convergence. Thus, ∀x ∈ X, f(x) = limn fn(x) = g(x).
So f = g = T (f), which means that the graph of T is closed. By the closed graph Theorem, T is
bounded.
Thus, ∀f ∈ H1, ‖f‖2 ≤ ‖T‖.‖f‖1.

3.18 Theorem. Aronszajn
Let H1,H2 be two RKHS on X.
Then, k := K1 + K2 is a kernel function on X. Its associated Hilbert space is H(K) := {f1 + f2, f1 ∈
H1, f2 ∈ H2}, with ‖f‖2H = inf(‖f1‖21 + ‖f2‖22 with f1 + f2 = f).
If H1 ∩H2 = {0}, then ‖f1 + f2‖2H = ‖f1‖21 + ‖f2‖2.

3.19 Note. Since the condition on K to be a kernel function is that (K(x, y)) is self-adjoint positive, the
sum of two kernel functions is clearly a kernel fuction.
Multiplying a kernel function by a c > 0 also gives another kernel function.
If the difference of two kernel functions K1 −K2 is still a kernel function K3, then H(K2) + H(K3) =
H(K1) because K2 +K3 = K1.

The next properties deal with composition of a kernel function with another function, in order to
go from a set X to another set S.

3.20 Proposition. — Let K be a kernel function on X, let S be a set, ϕ : S → X a function. Then K ◦ ϕ
is a kernel function on S.

3.21 Theorem. Let X1,X2 be sets, K1,K2 kernel functions on X1,X2, and ϕ : X1 → X2. We have the
equivalence :
i) {f ◦ ϕ, f ∈ H(K2)} ⊂ H(K1).
ii) Cϕ : f ∈ H(K2) 7→ f ◦ ϕ ∈ K(K1) is bounded.
iii) ∃c > 0 such as c2.K1 −K2 is a kernel function on X1.

Proof. Proof of i)⇒ ii)
Let {fn}n ∈ H(K2)N who converges in ‖.‖2 norm towards f ∈ H(K2), and with fn ◦ϕ that converges
in ‖.‖1 norm towards g ∈ H(K1). Then, ∀x ∈ X1, f(ϕ(x)) = limn(fn(ϕ(x))) = limn(fn◦ϕ(x)) = g(x),
because convergence in ‖.‖2 or ‖.‖1 imply ponctual convergence.
Thus, the graph of Cϕ is closed, and Cϕ is bounded by the closed graph theorem.

4 Multiplication Operators

4.1 Definition. Let X be a set. Let H be a Hilbert space of functions from X to C.
Let w : X → C be a function that verifies f.w ∈ H, ∀f ∈ H.

We define :
Mw : H → H

f 7→ f.w
the multiplication operator.

On the next part, we will look for functions that give bounded multiplication operators on L2

spaces and on Hardy and Bergman spaces, and see if these operators can be compact or even better.

12



4.1 Multiplication operators on L2(Ω)

4.1 Multiplication operators on L2(Ω)

Let Ω be an open subset of C.
If w ∈ L∞(Ω), then ∀f ∈ L2(Ω), ‖f.w‖2L2 ≤ ‖w‖2L∞ .‖f‖2L2 .
Thus, Mw is a bounded operator.
Furthermore, 〈g;Mw(f)〉 =

∫
Ω g(z).f(z).w(z)|dz| =

∫
Ω g(z).w(z).f(z)|dz| = 〈Mw(g); f〉.

Thus, for L2(Ω), M∗w = Mw and M∗w.Mw = M|w|2 .

4.2 Proposition. — σ(Mw) = {λ ∈ C such as ∀ε > 0, µ(w−1(B(λ; ε))) > 0} = w(Ω).
Where σ(Mw) is the spectrum of Mw, and µ the Lebesgue measure on C.

Proof. Let λ ∈ C such as ∀ε > 0, µ(w−1(B(λ; ε))) > 0. We will show that Mw − λ isn’t invertible.
We note Vλ,ε := w−1(B(λ; ε)).
Let us fx ε > 0, and take a compact K for which 0 < µ(Vλ,ε ∩K) <∞.
Then, g = ξVλ,ε∩K .

1√
µ(Vλ,ε∩K)

∈ L2(Ω) and ‖g‖L2 = 1.

If Mw − λ = Mw−λ is bijective, its inverse is M 1
w−λ

.
1

w−λ can be correctly defined nearly everywhere as a function from Ω to C {∞}.
But ‖g. 1

w−λ‖
2
L2 =

∫
Vλ,ε∩K

1
µ(Vλ,ε∩K) .

1
|w(z)−λ|2 |dz| ≥ ‖g‖

2
L2 .

1
ε2

.
Thus, M 1

w−λ
isn’t be bounded, so λ ∈ σ(Mw).

Conversely, for λ who doesn’t verify the property, ∃ε > 0 such as µ({y with f(y) ∈ B(λ, ε)}) = 0,
the function 1

w−λ has values in C nearly everywhere, and 1
|w−λ| ≤n.e.

1
ε ⇒

1
w−λ ∈ L

∞(Ω)⇒ M 1
w−λ

is

bounded⇒ λ /∈ σ(Mw).

4.3 Proposition. — The eigenvalues of Mw are {λ ∈ C such as µ(w−1({λ})) > 0}

Proof. If µ(w−1({λ})) > 0, ∃K compact such as 0 < µ(w−1({λ}) ∩K) <∞.
Thus, g = ξw−1({λ})∩K ∈ L2(Ω) and Mw(g) = λ.g. We have an eigenvector for λ.
Conversely, if µ(w−1({λ})) = 0, then Mw(g) = λ.g ⇔Mw(g)− λ.g = 0⇔ (w − λ).g = 0⇔ g =n.e. 0.
Thus, λ has no eigenvectors.

4.4 Proposition. — We now have that ‖Mw‖ = sup{|λ| with λ such as ∀ε > 0, µ(w−1(B(λ; ε))) >
0} = ‖w‖L∞ .

4.5 Note. As we explicitly determined the spectrum of multiplication operators on L2, we now know that
these are not compact if w(Ω) is not discrete, with maybe a limit point in zero.
And if we have a λ ∈ C with µ(w−1({λ})) > 0, then λ has a space of eigenvectors of infinite dimension.
Thus, Mw is compact if and only if w ≡ 0.

4.2 Multiplication operators on B2(Ω) and H2(Ω)

Here, we want that ∀f ∈ B2(Ω), w.f ∈ B2(Ω) (H2(Ω) respectively).
For the rest of the section, we will consider the case of B2(Ω), but the results are exactly identical for
H2(Ω).
Since we know that the reproducing kernels or the Bergman and Hardy spaces have no zeroes, the
functions kB

2(Ω)
z = KB2(Ω)(z; .) also have no zeroes in Ω.

As kB
2(Ω)

z ∈ B2(Ω), we need w.kB
2(Ω)

z to be holomorphic on Ω, so w.k
B2(Ω)
z

k
B2(Ω)
z

= w must be holomorphic

on Ω.
The w that make Mw well defined on B2(Ω) are way more restricted than on the L2 case.
We will also take ‖w‖L∞ <∞. Then, ‖Mw‖ ≤ ‖w‖L∞ , so Mw is bounded.
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4.6 Proposition. — Let w : Ω→ C be in Hol(Ω)∩L∞(Ω). Then Mw : B2(Ω)→ B2(Ω) is well defined,
bounded, and , σ(Mw) = w(Ω). This also implies that ‖Mw‖ = ‖w‖L∞ .

Proof. If λ /∈ w(Ω), then 1
|w−λ| ≤

1

d(λ;w(Ω))
<∞. So 1

w−λ is holomorphic and bounded on Ω, so Mw−λ

is invertible, so λ /∈ σ(Mw)⇒ σ(Mw) ⊂ w(Ω).
Conversely, let λ ∈ w(Ω). We have λ = w(y) for a y ∈ Ω.
For f, g ∈ B2(Ω), we have 〈g;Mw(f)〉 =

∫
Ω g(z).f(z).w(z)|dz| =

∫
Ω g(z).w(z).f(z)|dz|, but w isn’t

holomorphic, so Mw isn’t even well defined.
Thus, contrary to the L2 case, M∗w can’t be easily expressed.
However, for g = k

B2(Ω)
y , we have : 〈M∗w(k

B2(Ω)
y ); f〉 = 〈kB

2(Ω)
y ;Mw(f)〉 = w(y).f(y) = w(y).〈kB

2(Ω)
y ; f〉 =

〉w(y).k
B2(Ω)
y ; f〉.

So 〉M∗w(k
B2(Ω)
y )− w(y).k

B2(Ω)
y ; f〉 = 0, ∀f ∈ B2(Ω).

Thus, M∗w(k
B2(Ω)
y ) = w(y).k

B2(Ω)
y , so w(y) is an eigenvalue ofM∗w⇒ w(y) ∈ {λ, λ ∈ σ(M∗w)} = σ(Mw)

⇒ w(Ω) ⊂ σ(Mw)⇒ w(Ω) ⊂ σ(Mw).

4.7 Note. We saw that the spectrum of multiplication operators on B2 and H2 is the same as on L2.
Thus, Mw is compact if and only if w ≡ 0.

5 Composition Operators

5.1 Definition. - Let X1, X2 be sets, and F1, F2 be vector spaces of complex-valued functions over
X1, X2. Let φ : X1 → X2.

If ∀f ∈ F2, f ◦ φ ∈ F1, we define :
Cφ : F2 → F1

f 7→ f ◦ φ the composition operator.

- Let w : X1 → C be a function that verifies f.w ∈ F1, ∀f ∈ F1.
We define Mw ◦ Cφ : f ∈ F2 7→ (f ◦ φ).w ∈ F1 the weighted composition operator.

Before studying composition operators on Hardy and Bergman spaces, we will study composition
operators on spaces holomorphic functions with the topology of the uniform convergence on every
compact.
We will also only focus on D for now, with a study of the biholomorphisms D → D, in order to have
lighter proofs.
Properties of composition operators on Bergman/Hardy spaces of a space Ω will be discussed later
on, as the unitary map that links two Bergman/Hardy spaces doesn’t send a composition operator to
another composition operator, but to a weighted composition operator.

5.1 Composition operators on Hol(D)

We are looking at φ : D → D. Since Hol(D) contains holomorphic functions with no zeroes, Cφ will
be well defined on Hol(D) if and only if φ is holomorphic.

5.2 Proposition. — If φ isn’t constant, then Cφ is injective.

Proof. Cφf = Cφg ⇔ f = g on φ(D)⇔ f = g on D by of the isolated zeroes theorem.

5.3 Note. For C0(D) and φ : D→ D continuous, Cφ is injective if and only if φ(D) = D.
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5.1 Composition operators on Hol(D)

5.4 Theorem. Cφ is bijective on Hol(D) if and only if φ is bijective.

Proof. ⇐
If φ is bijective, φ−1 is holomorphic, and (Cφ)−1 = Cφ−1 .
⇒
If φ isn’t injective, we have α, β such as φ(α) = φ(β). Thus, ∀f ∈ Hol(D), f ◦ φ(α) = f ◦ φ(β)⇒ Cφ
isn’t surjective⇒ Cφ isn’t invertible on Hol(D), contradiction.
If φ isn’t surjective, there exists a w ∈ D− φ(D).
Let f : z 7→ 1

z−w and g : z 7→ 1
φ(z)−w . f is holomorphic on φ(D) but not on D, g is holomorphic on D.

Since Cφ is surjective, we would have h ∈ Hol(D) such as h ◦φ(z) = g(z) = f ◦φ(z)⇒ h = f on φ(D)
⇒ h ≡ f ⇒ h /∈ Hol(D), contradiction.

5.5 Theorem. The biholomorphisms from D to D are of the form : eiθ.ϕα, with ϕα : z 7→ z−α
α.z−1 , for

α ∈ D, θ ∈ [0, 2π[.
Such a biholomorphism is determined by fixing the image of two points.

5.6 Note. We have ϕα(α) = 0, ϕα(0) = α, and ϕ−1
α = ϕα.

5.7 Theorem. Let φ : D→ D, holomorphic, with φ(0) = 0. If φ isn’t a rotation, then φn := φ◦. . .◦φ→ 0
uniformly on every compact.

Proof. For g : z 7→
∣∣∣∣ φ(z)

z if z 6= 0
φ′(0) else

, g ∈ Hol(D) and supD(|g|) = limr→1−(supz=r.eiθ |g(z)|) ≤ 1, by

applying the maximum principle.
So |φ(z)| ≤ |z|, ∀z ∈ D. Because φ isn’t a rotation, we can’t have equality in the maximum principle
inequality, so |φ(z)| < |z|, ∀z ∈ D.
Let’s fix K a compact. We have 0 < r < 1 such as K ⊂ B(0, r). Thus, |φ(z)| < r on ∂B(0, r), so
Mr := sup∂B(0,r)|φ| < r.

For ψ : z 7→ φ(r.z)
Mr

, ψ ∈ Hol(D), ψ(0) = 0, and ψ(D) ⊂ D. So, |ψ(z)| < |z| with the previous argument.
Thus, |φ(z)| ≤ Mr

r .|z|, with Mr
r < 1. So |φn(z)| ≤ (Mr

r )n.|z|, which means that φn converges to 0
uniformly on K.

5.8 Corollary. Let φ : D → D, holomorphic, non-bijective, with φ(α) = α for an α ∈ D. Then φn :=
φ ◦ . . . ◦ φ→ α uniformly on every compact.
By looking at ψ := ϕ−1

α ◦ φ ◦ ϕα, we can apply the theorem to ψ and obtain the conclusion on φ.
This also says that a non-bijective holomorphic function of D→ D has at most 1 fix point.

5.9 Theorem. Theorem of Koenigs
Let φ : D→ D, holomorphic, non-bijective, with a fix point α ∈ D such as φ′(α) 6= 0.
Then, the eigenvalues of Cφ on Hol(D) are φ′(α)n, ∀n ≥ 0.
These eigenvalues are of multiplicity one. For σ an eigenfunction of φ′(α), σn is an eigenfunction of
φ′(α)n.
If φ is injective, then σ is injective.

Proof. By looking at ϕ−1
α ◦ φ ◦ ϕα, we will suppose that α = 0. All the results for α ∈ D can then be

obtained by composing again by ϕα.
– Since φ′(0) 6= 0, φ isn’t constant. Thus, 0 isn’t an eigenvalue.
– Let λ be an eigenvalue with a constant eigenfunction f. Then f ◦ φ = f = λ.f , so λ = 1.
– Let λ be an eigenvalue with a non-constant eigenfunction f. Then λ 6= 1 and f(0) = 0.
By applying theorem 5.7, φn converges towards 0 uniformly on every compact.
If λ was 1, then f ◦ φ = f ⇒ f ◦ φn = f ⇒ f = lim(f ◦ φn) = f(0), by uniform convergence ⇒ f is
constant, contradiction.
Also, f ◦ φ(0) = f(0) = λ.f(0). Since λ 6= 1, we have f(0) = 0.
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5.2 Bounded composition operators on H2(D)

– λ is of the form φ′(0)n, for a n ≥ 0.
Let f be an eigenfunction for λ. We have a n ≥ 0 for which f(z) =

∑
k≥n ak.z

k, with an 6= 0.

Thus, for z 6= 0, we obtain : λ = f(φ(z))
f(z) = (φ(z)

z )n.an+an+1.φ(z)+...
an+an+1.z+...

→z→0 φ
′(0)n.

– The multiplicity of the eigenvalues is 1.
If λ = 1, then an eigenfunction f can only be constant.
Let f be an eigenfunction for λ 6= 1. Then f(0) = 0, and ∃N > 0 such as λ = φ′(0)N .
We also saw from the previous point that f(z) =

∑
n≥N an.z

n, with aN 6= 0. So f ′(0) = . . . =

f (N−1)(0) = 0 and f (N)(0) 6= 0. By derivating f ◦ φ = λ.f multiple times and evaluating in z = 0,
we can see by induction that for any m > N , f (m)(0) depends on f (N)(0), . . . , f (m−1)(0) and on
φ(0), φ′(0), . . . , φ(m)(0).
Since φ(0), φ′(0), . . . , φ(m)(0) are already known, we can see that f (m)(0) will be determined by
f (N)(0). Since f(z) =

∑
n≥N

f (n)

n! .z
n, f is determined by f (N)(0).

Thus, for f,g eigenfunctions such as f (N)(0) = g(N)(0), we have f = g.
– ∃σ ∈ Hol(D) such as σ ◦ φ = φ′(0).σ.
Let λ = φ′(0). We define σn := λ−n.φn. Thus, σn ◦ φ = λ.σn+1.
We have : σn(z) = z.φ(z)

λ.z .
φ2(z)
λ.φ(z) . . .

φn(z)
λ.φn−1(z) = z.Πn−1

i=0 F (φi(z)), with F (z) = φ(z)
λ.z .

We will show that Πj≥0F (φj(z)) converges uniformly on every compact.
We have ‖1− F‖L∞ ≤ 1 + ‖F‖L∞ ≤ 1 + 1

|λ| := A. And F (0) = φ′(0)
λ = 1.

Thus, |1−F (z)|
A ≤ |z|, ∀z ∈ D. Let’s fix 0 < r < 1. We know that we have |φn| ≤ (Mr

r )n.|z|, with Mr
r < 1.

This means that : |1− F (φn(z)| ≤ A.|φn(z)| ≤ A.(Mr
r )n.|z|.

So
∑

j≥0 |1−F (φj(z)| converges uniformly on every compact of D. Thus, Πj≥0F (φi(z)) also converges
uniformly on every compact of D, and its limit is holomorphic.
We obtain then σ ∈ Hol(D) such as σ ◦ φ = λ.σ.
– σn is an eigenvalue for φ′(0)n.
We have σn ◦ φ = (σ ◦ φ)n = (φ′(0).σ)n = φ′(0)n.σn.
– If φ is injective, then σ is injective.
φ injective ⇒ φn is injective ⇒ σn is injective ⇒ σ is either injective or constant ⇒ σ is injective,
because σ is non-constant.

5.10 Note. This theorem gives a really detailed description of the eigenvalues of a composition operator
in Hol(D). It will also be helpful for composition operators on Hardy or Bergman spaces, as eigenvalues
of an operator on these spaces are also eigenvalues of this operator in Hol(D).
So as long as the function φ has a fix point, we have a clear description of them.
Koenig’s theorem can be extended to Hol(Ω), for Ω an open and simply connected space of C, by compos-
ing φ : Ω→ Ω, holomorphic, with ψ : Ω→ C a biholomorphism that sends the fix point of φ to 0.

5.2 Bounded composition operators on H2(D)

The previous theorems gave many information about composition operators on Hol(D).
Theorem 3.21 says that a composition operator Cφ on a Bergman or Hardy space is bounded if and
only if it is well defined.
But as of now, we don’t have any property ensuring that Cφ is well defined on these spaces.
The goal of this subsection is to study definiteness and boundedness of such composition operators.

5.11 Theorem. Littlewood’s subordination theorem
Let φ : D→ D, holomorphic, with φ(0) = 0. Then ∀f ∈ H2(D), Cφf ∈ H2(D) and ‖Cφ‖ ≤ 1.

To prove this theorem, we will need to use a result about harmonic functions.
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5.2 Bounded composition operators on H2(D)

5.12 Definition. Let g : D → R a continuous function. g is called a harmonic function on D if and
only if g verifies the mean value property : ∀z ∈ D, ∀0 < r < 1− |z|, g(z) = 1

2π .
∫ 2π

0 g(z + r.eiθ)dθ.
g is called a subharmonic function on D if and only if : ∀z ∈ D, ∀0 < r < 1−|z|, g(z) ≤ 1

2π .
∫ 2π

0 g(z+
r.eiθ)dθ

5.13 Theorem. Let g : D→ R be a continuous function.
If g is harmonic on D, then g is analytic on D.
If two harmonic functions on D, g1 and g2 are equal on an open space U, then g1 ≡ g2.
g is harmonic on D if and only if it can be expressed as the real part of an holomorphic function in Hol(D).
Let z0 ∈ D and 0 < r < 1 − |z0|. Let h : ∂B(zo, r) → R be a continuous function. Then, there exists an
unique 1function g : B(zo, r)→ R, harmonic on B(z0, r), such as g ≡ h on ∂B(zo, r).

With this theorem, we can now prove Littlewood’s subordination theorem.

Proof. Using Schwarz’s lemma like beore, we obtain : |φ(z)| ≤ |z|, ∀z ∈ D. We also note that
∀f ∈ H2(D), f is holomorphic, and f2 is holomorphic.
Thus, the mean value property applied to f2 gives : ∀z ∈ D, ∀0 < r < 1− |z|,

f2(z) =
1

2π
.

∫ 2π

0
f2(z + r.eiθ)dθ

⇒ |f2(z)| ≤ 1

2π
.

∫ 2π

0
|f2(z + r.eiθ)|dθ

Therefore, |f2| is subharmonic on D.
Let’s fix 0 < r < 1. Since |f2| is continuous from ∂B(0, r) to R+ , theorem 5.13 gives us an unique
h : B(0, r)→ R, h harmonic on B(0, r), such as h ≡ |f2| on ∂B(0, r).
Since |f2| ≥ 0 on ∂B(0, r), h ≥ 0 on B(0, r) by harmoniticity.
Since |f2| is subharmonic, we also obtain that : ∀z ∈ B(0, r), |f2(z)| ≤ h(z)⇒ |f(φ(z))|2 ≤ h(φ(z)),
because |φ(z)| ≤ |z|.
Thus, we finally obtain : 1

2π .
∫ 2π

0 |f ◦ φ(r.eiθ)|2dθ ≤ 1
2π .
∫ 2π

0 h ◦ φ(r.eiθ)dθ = h ◦ φ(0) = h(0) =
1

2π .
∫ 2π

0 h(r.eiθ)dθ = 1
2π .
∫ 2π

0 |f(r.eiθ)|2dθ

⇒ ‖f ◦ φ‖2H2(D) = lim
r→1−

(
1

2π
.

∫ 2π

0
|f ◦ φ(r.eiθ)|2dθ) ≤ lim

r→1−
(

1

2π
.

∫ 2π

0
|f(r.eiθ)|2dθ) = ‖f‖2H2(D)

⇒ Cφ is well defined on H2(D) and ‖Cφ‖ ≤ 1.

We will now prove a little lemma before coming to the main theorem of this subsection.

5.14 Lemma. For ϕα : z 7→ z−α
α.z−1 , α ∈ D, Cϕα is bounded on H2(D) and ‖Cϕα‖ ≤

√
1+|α|
1−|α| .

Proof. Let 0 < r < 1.∫ 2π
0 |f ◦ ϕα(r.eiθ)|2dθ =

∫ 2π
0 |f(r.eit)|2.|ϕ′α(r.eit)|dt ≤

∫ 2π
0 |f(r.eit)|2. 1−(r.|α|)2

|1−α.r.eit|2dt

≤
∫ 2π

0 |f(r.eit)|2.1−(r.|α|)2

(1−r.|α|)2dt ≤
∫ 2π

0 |f(r.eit)|2.1+r.|α|
1−r.|α|dt ≤

∫ 2π
0 |f(r.eit)|2.1+|α|

1−|α|dt

Because for g(r) = 1+r.|α|
1−r.|α| , g(r) = 2

1−r.|α| − 1, so g(r) ≤ g(1) = 1+|α|
1−|α| .

Thus, ‖f ◦ ϕα‖2H2(D) ≤
1+|α|
1−|α| .‖f‖

2
H2(D).

5.15 Theorem. Let φ : D→ D holomorphic. Then Cφ is bounded on H2(D) and ‖Cφ‖ ≤
√

1+|φ(0)|
1−|φ(0)| .

Proof. For ψ = ϕφ(0) ◦ φ, we have ψ(0) = 0, so ‖Cψ‖ ≤ 1, and φ = ϕφ(0) ◦ ψ, because ϕ−1
φ(0) = ϕφ(0).

Thus, ‖Cφ‖ ≤ 1.
√

1+|φ(0)|
1−|φ(0)| .

See [4], Lectures on composition operators and analytic function theory, Ch 1-4.
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5.3 Bounded composition operators on B2(D)

5.3 Bounded composition operators on B2(D)

The same theorems can be proven for B2(D). The proofs use the exact same arguments, the only
difference being in the expression of the H2(D) norm with the B2(D) norm.

5.16 Theorem. Littlevood’s subordination theorem Let φ : D → D, holomorphic, with φ(0) = 0. Then
∀f ∈ B2(D), Cφf ∈ B2(D) and ‖Cφ‖ ≤ 1.

5.17 Lemma. For ϕα : z 7→ z−α
α.z−1 , α ∈ D, Cϕα is bounded on B2(D) ‖Cϕα‖ ≤

√
1+|α|
1−|α| .

5.18 Theorem. Let φ : D→ D holomorphic. Then Cφ is bounded on B2(D) and ‖Cφ‖ ≤
√

1+|φ(0)|
1−|φ(0)| .

5.19 Note. A simpler proof for the Hardy case can be done by using an operator called the backwards
shift operator to show that Cφ is well defined and bounded over polynomials, and then use the density of
the polynomials to get the result on the whole space.
However, this proof doesn’t extend to the Bergman case easily because of the difference of orthonormal
basis : {zn}n for one side and {zn.

√
π
n+1}n on the other side.

5.4 Bounded composition operators on B2(Ω), H2(Ω)

5.20 Note. For Ω an open and simply connected space, ψ : D → Ω a biholomorphism, ψ′p : D → C
can be well defined for any p > 0, and U : f ∈ B2(Ω) 7→ (f ◦ ψ).(ψ′) ∈ B2(D) and V : f ∈ H2(Ω) 7→
(f ◦ ψ).(ψ′)

1
2 ∈ H2(D) are unitary maps.

For ϕ : Ω→ Ω, we can study the boundedness or compactness of Cϕ on B2(Ω) (resp H2(Ω)) by studying
UCϕU

−1 on B2(D) (resp V CϕV −1 on H2(D)).
For φ := ψ−1 ◦ ϕ ◦ ψ, we have : AB2,ϕ := UCϕU

−1 = M ψ′
ψ′◦φ

Cφ and AH2,ϕ := V CϕV
−1 = M

( ψ′
ψ′◦φ )

1
2
Cφ.

As said in the beginning of the section, AB2,ϕ and AH2,ϕ are weighted composition operators. We know
from theorems 5.15 and 5.18 that Cφ is bounded on B2(D) and H2(D), but the multiplication part may
not be bounded depending on the shape of Ω.
A weighted composition operator can be bounded (even compact) even if its multiplication part is not
bounded, but this is not always true.
Thus, the result obtained on D that every composition operator is bounded is not true for every open and
simply connex space Ω.

Now that we possess two families of operators that are well defined and bounded over Hardy and
Bergman spaces, namely the multiplication and composition operators, we will recall some theorems
for bounded operators on Hilbert spaces in order to study the potential compactness of such operators.
The section following these recalls will focus on approximation numbers, elements that help in giving
interesting properties about compactness and compact operators.
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6 Bounded Operators on Hilbert spaces

For most of the theorems, we will suppose that H is a complex and separable Hilbert space. Banach
spaces will be used for some general properties, but the objective is to obtain general theorems on
bounded operators on complex and separable Hilbert spaces.

6.1 Bounded Operators and Polar decomposition theorem

6.1 Definition. Let E,F be Banach spaces.
We denote by L(E,F ) the set of bounded operators from E to F. If E=F, we note that space L(E).
Let H be an Hilbert space with its inner product 〈; 〉H .
Let A ∈ L(H). By applying Riesz Lemma, we can show that A possesses an adjoint operator
A∗ ∈ L(H), such as : ∀f, g ∈ H, 〈f ;A.g〉H = 〈A∗.f ; g〉H .
An operator A ∈ L(H) is self-adjoint if and only if ∀f, g ∈ H, 〈f ;A.g〉H = 〈A.f ; g〉H ⇔ A∗ = A.
An operator A ∈ L(H) is positive if and only if ∀f ∈ H, 〈f ;A.f〉H ≥ 0. A is definite if and only if
∀f ∈ H, f 6= 0, 〈f ;A.f〉H 6= 0.

6.2 Note. ∀A ∈ L(H), A∗A is self-adjoint positive.

6.3 Proposition. — Every positive operator on a complex Hilbert space is self-adjoint.

As we will only be working with complex Hilbert spaces, this property will always be usable.

6.4 Theorem. Let H be a separable Hilbert space. Then H possesses an orthonormal basis.

As we will only be working with separable Hilbert spaces, this theorem will always be usable.

6.5 Theorem. Let H be a Hilbert space, let A ∈ L(H), A positive.
Then ∃!B ∈ L(H), B positive, that verifies B2 = A.
This operator is noted by

√
A := B.

For any C ∈ L(H) that commutes with A, C will commute with B.
If A is self-adjoint, so i

√
A.

6.6 Definition. Let A ∈ L(H). We note |A| :=
√
A∗A.

6.7 Note. It is in general false that |AB| = |A||B|, |A∗| = |A|, or |A+B| ≤ |A|+ |B|.
However, |A| is self-adjoint positive.
For any f ∈ H, ‖|A|.f‖2H = 〈|A|.f ; |A|.f〉H = 〈f ; |A|2.f〉H = 〈f ;A∗A.f〉H = ‖A.f‖2, and ‖|A|‖ = ‖A‖.

6.8 Definition. Let U ∈ L(H). U is a partial isometry if U |Ker(U)⊥ is an isometry from Ker(U)⊥ to
U(H).

6.9 Theorem. Polar decomposition theorem
Let A ∈ L(H). Then ∃U a partial isometry such as A = U.|A|.
U is unique if we choose Ker(U) = Ker(A). Moreover, U(H) = A(H).

Proof. We define U : |A|(H)→ A(H) by U(|A|.f) = A.f .
We have : ‖|A|.f‖2H = ‖A.f‖2H , and |A|.f = 0 ⇔ A.f = 0 so U is well defined and isometric. It
extends to an isometry from |A|(H) to A(H).
We extend U on H by U |

|A|(H)
⊥ = 0.

Since |A| is self-adjoint, Ker(|A|) = Im(|A|)⊥, and |A|.f = 0 ⇔ A.f = 0, Ker(A) = Ker(|A|) =
Ker(U).

See [8], Methods of modern mathematical physics, I : Functional analysis, Ch VI.4-VI.6.
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6.2 Compact Operators and Hilbert-Schmidt theorem

6.2 Compact Operators and Hilbert-Schmidt theorem

6.10 Definition. Let X,Y be Banach spaces.
An operator A ∈ L(X,Y ) is compact if and only if the image of the unit ball by A is relatively com-
pact.
The subspace of compact operators is noted K(X,Y ).

6.11 Note. Finite rank operators are compact.

6.12 Definition. A sequence {xn}n ∈ HN is weakly convergent if and only if {〈y;xn〉H}n is conver-
gent ∀y ∈ H.
In a Banach space setting, {xn}n is weakly convergent if and only if {L(xn)}n is convergent ∀l ∈ H∗.

6.13 Proposition. Let B be a compact operator. Then, ∀{xn}n weakly convergent, {B.xn}n is convergent.

6.14 Proposition. Let X,Y be Banach spaces. Let T ∈ L(X,Y ). We have :
i) If {Tn} is a sequence of compact operators that converge in norm towards T, then T is compact. Thus,
K(X,Y ) is closed n L(X,Y ).
ii) For Z another Banach space, S ∈ L(Y,Z), if T or S is compact, then ST is compact.
iii) If X,Y are Hilbert spaces, T is compact if and only if T ∗ is compact.

6.15 Theorem. Every compact operator on a separable Hilbert space is the norm limit of a sequence of
finite rank operators.

Proof. Let {ψj}j be an orthonormal basis of H. We define λn := supf∈Span(ψ1,...,ψn)⊥,‖f‖=1(‖Tf‖).
We remark that {λn}n is monotone decreasing.
For any n ≥ 0, let fn ∈ Span(ψ1, . . . , ψn)⊥, ‖fn‖ = 1 with ‖Tfn‖ ≥ λn

2 .
The sequence {fn}n weakly converges towards 0. Since T is compact, {Tfn}n converges towards 0.
Thus, λn converges towards 0.
Therefore,

∑N
n=1〈ψn; .〉.(Tψn) are finite rank operators and they converge in operator norm towards

T, as the norm of the difference is λn.

6.16 Proposition. - If A is a compact operator on L(H), then either (I −A)−1 exists, or AΨ = Ψ has a
solution.
- If A is a compact operator, every λ in σ(A)− {0} is an eigenvalue of A.

6.17 Theorem. Riesz-Schauder theorem
Let A be a compact operator on H. Then σ(A) is discrete, with no limit point except sometimes 0.
∀λ ∈ σ(A), λ 6= 0, λ is an eigenvalue of A of finite multiplicity.

6.18 Theorem. Hilbert-Schmidt theorem
Let A ∈ L(H) be self-adjoint compact.
Then there is {Ψn}n an orthonormal set of H and {λn}n a sequence of real values with λn ≥ 0, λn+1 ≤ λn,
λn → 0, such as :

A =
∑
n≥0

λn.〈Ψn; .〉H .Ψn
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6.19 Theorem. Canonical form of compact operators
Let A ∈ L(H) be compact.
Then there are {Ψn}n and {Φn}n two orthonormal sets of H, and {λn}n a sequence of real values with
λn ≥ 0, λn+1 ≤ λn, λn → 0, such as :

A =
∑
n≥0

λn.〈Ψn; .〉H .Φn

6.20 Note. In the last theorem, the non-zero λn are the non-zero eigenvalues of |A|, and |A| =
∑

n≥0 λn.〈Ψn; .〉H .Ψn.
These non-zero λn are called the singular values of A.
If A is self-adjoined, a singular value of A is the modulus of an eigenvalue of A.
However, there is no such explicit relation between singular values and eigenvalues for a general bounded
operator A.

Now that the main properties of compact operators have been put together, we can calmly start to
define approximation numbers and study their properties. Many types of compact operators will also
appear in the way.

7 Approximation numbers and Ip Ideals

7.1 Approximation numbers

7.1 Definition. For r ≥ 0, E,F Banach spaces, and T ∈ L(E,F ), we define αr(T ) := inf{‖T−A‖, A ∈
L(E,F ), rank(A) ≤ r}, the r-th approximation number of T.

We clearly have : ‖T‖ = α0(T ) ≥ α1(T ) ≥ α2(T ) ≥ . . . ≥ 0.
Many other properties can be found for these approximation numbers, that make them easier to ma-
nipulate.

7.2 Proposition. — For S, T ∈ L(E,F ), r, s ≥ 0, we have :

αr+s(S + T ) ≤ αr(S) + αs(T )

Proof. Let ε > 0. We choose A,B ∈ L(E,F ), rank(A) ≤ r, rank(B) ≤ s, such as ‖S−A‖ ≤ αr(S)+ε,
‖T −B‖ ≤ αs(T ) + ε.
Thus, rank(A+B) ≤ r + s, and ‖(S + T )− (A+B)‖ ≤ αr(S) + αs(T ) + 2ε.
⇒ αr+s(S + T ) ≤ αr(S) + αs(T ).

7.3 Proposition. — ∀r ≥ 0, ∀S, T ∈ L(E,F ),

|αr(S)− αs(T )| ≤ ‖S − T‖

Proof. We have : αr(S) ≤ αr(T ) + α0(S − T )⇒ αr(S)− αs(T ) ≤ ‖S − T‖.

7.4 Proposition. — ∀r ≥ 0, ∀λ ∈ C, ∀T ∈ L(E,F ),

αr(λ.T ) = |λ|αr(T )

Proof. If λ = 0, the property is verified.
If λ 6= 0, we have : αr(λ.T ) = inf{‖λ.T − A‖, rank(A) ≤ r} = |λ|.inf{‖T − A

λ ‖, rank(A) ≤ r} =
|λ|αr(T ).

See [1], Nuclear locally convex spaces, Ch 8.
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7.1 Approximation numbers

7.5 Proposition. — If ∃r ≥ 0 such as αr(T ) = 0, then rank(T ) ≤ r.

Proof. Suppose that rank(T ) > r. Then we have x1, . . . , xr+1 such as Tx1, . . . Txr+1 are linearly
independant.
This gives r+1 linear forms bk ∈ F ′ such as 〈bk;Txi; 〉 := bk(Txi) = δi,k.
Since det({δi,k}i,k) = 1, we have a σ > 0 such as :
For {βi,k}i,k with |δi,k − βi,k| ≤ σ, then det({βi,k}i,k) 6= 0.
Let’s fix ε > 0. Since αr(T ) = 0, We have A ∈ L(E,F ), rank(A) ≤ r, such as ‖T −A‖ ≤ ε.
Thus, we have in particular : |δi,k−〈bk, Axi〉| = |〈bk;Txi−Axi〉| ≤ ‖T −A‖.‖xi‖.‖bk‖ ≤ ε‖xi‖.‖bk‖ ≤
σ, for ε small enough.
Therefore, det({〈bk;Axi〉}i,k) 6= 0⇒ Axi are linearly independant⇒ rank(A) ≥ r+ 1, contradiction.

7.6 Proposition. — ∀r, s ≥ 0,
αr+s(ST ) ≤ αr(S).αs(T )

Proof. Let ε > 0. We choose A,B ∈ L(E,F ) with rank(A) ≤ s, ‖T − A‖ ≤ αs(T ) + ε , rank(B) ≤ r,
‖S −B‖ ≤ αr(S) + ε.
Then, rank(A(T −B) + SB) ≤ s+ r, and we have :

αr+s(ST ) ≤ ‖ST −A(T −B)− SB‖ ≤ ‖S −A‖.‖T −B‖ ≤ αr(S)αs(T ) + ε2 + ε(αr(S) + αs(T ))

7.7 Note. If G is a linear subspace of F, then αFr (T ) ≤ αGr (T ) as L(E,G) ⊂ L(E,F ).

7.8 Proposition. — If G is dense in F, then αFr (T ) = αGr (T ).

7.9 Lemma. Let r ≥ 0. If we have T ∈ L(E,Cr+1) such as ∃S ∈ L(Cr+1, E) with TS = ICr+1 .
Then, ∀0 ≤ n ≤ r,

αn(T ).‖S‖ ≥ 1

Proof. If we have 0 ≤ n ≤ r with αn(T ).‖S‖ < 1, we have A with rank(A) ≤ n such as ‖T −A‖.‖S‖ <
1.
Thus, ICr+1 − (T −A)S must be invertible in L(Cr+1).
But ICr+1−(T−A)S = TS−TS+AS = AS, non invertible because rank(AS) ≤ r, contradiction.

7.10 Proposition. •— For T ∈ L(l2) with T ((xi)i) = (τi.xi)i, τi ∈ C, then

αr(T ) = sup
I⊂N, card(I)=r+1

{inf{|τi|, i ∈ I}} := σr(T )

Proof. We note that for I0 := {i ∈ N such as |τi| > σr(T )}, card{I0} ≤ r.
And A : (xi)i 7→ (τi.δI0(i)xi)i is of rank ≤ r.
Thus, αr(T ) ≤ ‖T −A‖ = sup{|τi|, i ∈ N− I0} ≤ σr(T ).
If σr(T ) = 0, we have the equality we wanted.
Else, take I ⊂ N, card(I) = r+ 1, with ρI := inf{|τi|, i ∈ I} > 0. Since σr(T ) > 0, such an I that gives
ρI > 0 exists.
Let PI : (xi)i 7→ (δI(i)xi)i. We have rank(Pi) = r + 1 and ‖PI‖ = 1.
We have PI .T : (xi)i 7→ (τi.δI(i)xi)i.

Thus, for SI : (xi)i 7→ (γi.xi)i with
∣∣∣∣ 1
τi

if i ∈ I
0 else.

We have ‖SI‖ = 1
inf{|τi|} = 1

ρI
, and (PI .T ).SI((xi)i∈I) = (xi)i∈I .
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7.2 Operators of type lp

Thus, by lemma 7.9, αr(PI .T ).‖S‖ ≥ 1⇒ αr(PI .T ) ≥ ρI
⇒ ρI ≤ αr(PI .T ) ≤ ‖PI‖αr(T ) ≤ αr(T ).
Since this is true for all I for which card(I) = r + 1 and ρI > 0, and since σr(T ) = sup{ρJ , card(J) =
r + 1}, we have σr(T ) ≤ αr(T ).

7.11 Note. This last property is also true for lp with 0 < p ≤ ∞.
It will be useful in certain cases like for self-adjoint compact operators, as if you use the orthonormal
set that diagonalizes the operator, you can see it as a bounded operator on l2 and obtain two different
expressions of αr(T ) : one as an infimum, and one as the supremum of an infimum.

We now have all the tools necessary for a good study of approximation numbers. We will now
begin to define spaces of bounded operators with specific approximation numbers.

7.2 Operators of type lp

7.12 Definition. Let 0 < p <∞. We define Ip(E,F ) := {T ∈ L(E,F ) such as
∑

r αr(T )p <∞}.
These operators are called type lp operators.

7.13 Proposition. — Ip(E,F ) is a vector space.

Proof. First, Ip(E,F ) ⊂ L(E,F ). Let λ ∈ C, T, S ∈ Ip. We have :
αr(λ.T ) = |λ|.αr(T )⇒ λ.T ∈ Ip.
We remind that ∀a, b ≥ 0, (a+ b)p ≤ max{2p−1, 1}.(ap + bp). We note τp := max{2p−1, 1}.
Thus,∑

r≥0

αr(S + T )p ≤
∑
r∈2N

αr(S + T )p +
∑

r∈(2N+1)

αr−1(S + T )p ≤ 2.
∑
r≥0

α2r(S + T )p

≤ 2.
∑
r≥0

(αr(S) + αr(T ))p

≤ 2τp.
∑
r≥0

(αr(S)p + αr(T )p) <∞

7.14 Definition. For 0 < p <∞, T ∈ Ip, we define Qp(T ) := (
∑

r≥0 αr(T )p)
1
p .

7.15 Proposition. Qp(T ) verifies the following properties :
i) Qp(T ) ≥ 0
ii) Qp(T ) = 0⇔ T = 0.
iii) ∀λ ∈ C, Qp(λ.T ) = |λ|Qp(T )

iv) For ρp :=

∣∣∣∣∣ 2 if p ≥ 1

2
1
p−1 if p < 1

, ∀S, T ∈ Ip, we have :

Qp(S + T ) ≤ ρp(Qp(T ) +Qp(S)).

Thus, Qp is a quasi-norm on Ip. It is not a norm as it doesn’t verify the triangular inequality, but
it still defines a metric topology on Ip.
For certain p like p = 1, 2, the inequality can be refined to show that Qp is a norm.

23



7.2 Operators of type lp

7.16 Proposition. — Let’s suppose here that E=F.
- For T ∈ Ip, Qp(T ) ≥ α0(T ) = ‖T‖.
- For S, T ∈ Ip, Qp(S.T ) ≤ Qp(S).Qp(T ).
- Ip is an ideal : ∀T ∈ Ip, ∀A ∈ L(E), AT, TA ∈ Ip.
αr(AT ) ≤ αr(T ).‖A‖ ⇒ Qp(AT ) ≤ Qp(T ).‖A‖.
αr(TA) ≤ αr(T ).‖A‖ ⇒ Qp(TA) ≤ Qp(T ).‖A‖.
- If E is an Hilbert space, for T ∈ Ip, then T ∗ ∈ Ip.
Since rank(A) = rank(A∗) and ‖T ∗ − A∗‖ = ‖T − A‖, αr(T ) = inf{‖T − A‖, rank(A) ≤ r} =
inf{‖T ∗ −A‖, rank(A) ≤ r} = αr(T

∗).

7.17 Lemma. If {Tn}n is Qp-Cauchy in Ip, then it converges towards a T ∈ Ip for Qp.
Thus, Ip(E,F ) is complete with Qp.

Proof. Since Qp(.) ≥ ‖.‖, {Tn}n is also ‖.‖-Cauchy. Thus, it converges towards a T ∈ L(E,F ) for ‖.‖.
We have : |αr(T − Tn)− αr(Tm − Tn)| ≤ ‖T − Tn − Tm + Tn‖ = ‖T − Tm‖.
Thus, ∀n ≥ 0, αr(Tm − Tn)→m→∞ αr(T − Tn)

Let ε > 0. ∃n0 such as ∀m, q ≥ n0, Qp(Tm − Tq) = (
∑

r≥0 αr(Tm − Tq)p)
1
p < ε.

⇒ Qp(T − Tq) = (
∑
r≥0

αr(T − Tq)p)
1
p < ε

by uniform dominated convergence of
∑N

r=0 αr(Tm − Tq)p towards
∑N

r=0 αr(T − Tq)p, ∀N ≥ 0.
Thus, T − Tq ∈ Ip ⇒ T ∈ Ip, and Tn →

Qp
n→∞ T .

7.18 Proposition. — The finite rank operators are dense in Ip.

Proof. Let T ∈ Ip. Let ε > 0. ∃n0 such as
∑

r≥n0
αr(T )p < ε.

Thus, n0.α2n0(T )p ≤
∑2n0

r=n0+1 αr(T )p < ε.
Let’s take A ∈ L(E,F ), rank(A) ≤ 2n0, with n0.‖T −A‖p < ε.
Then, αr+2n0(T −A) ≤ αr(T ) + α2n0(A) = αr(T ) + 0, ∀r ≥ 0.
Therefore :

Qp(T −A)p =

3n0−1∑
r=0

αr(T −A)p +

∞∑
r=3n0

αr(T −A)p

≤ 3n0.‖T −A‖p +
∞∑

r=n0

αr(T )p

≤ 3ε+ ε

Thus, for every T ∈ Ip, for every ε > 0, we have a finite rank operator A such as Qp(T −A) < ε.

7.19 Proposition. — Since we know that {finite rank}Qp = Ip and that Qp(.) ≥ ‖.‖, we have :

Ip = {finite rank}Qp ⊂ {finite rank}‖.‖ = K(E,F )

So every operator in Ip is compact.

7.20 Proposition. — For p ≤ q, Ip ⊂ Iq.

Proof. If Qp(T ) <∞, then ∃n0 such as ∀n ≥ n0, 0 ≤ αn(T ) < 1.
⇒ αn(T )q ≤ αn(T )p ⇒

∑∞
n=n0

αn(T )q <∞.
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7.2 Operators of type lp

7.21 Theorem. ∀T ∈ Ip(E,F ), ∀S ∈ Iq(F,G), we have ST ∈ Is(E,G), with 1
s = 1

p + 1
q , and

Qs(ST ) ≤ 2
1
sQq(S)Qp(T ).

Proof. We have :

Qs(ST ) = (
∑
r≥0

αr(ST )s)
1
s ≤ (2.

∑
r≥0

α2r(ST )s)
1
s ≤ (2.

∑
r≥0

αr(S)s.αr(T )s)
1
s

≤ 2
1
s .(
∑
r≥0

αr(S)q)
1
q .(
∑
r≥0

αr(T )p)
1
p , using Holder’s inequality

≤ 2
1
sQq(S)Qp(T ) <∞

7.22 Note. For T ∈ Ip,
∑

r αr(T )p <∞.
Thus, ∀N ≥ 0, (N + 1).αN (T )p ≤

∑N
n=0 αn(T )p ≤ Qp(T )p

⇒ αN (T ) ≤ Qp(T )

(N+1)
1
p

.

7.23 Proposition. We have then :

αn(T ) ≤ C

(N + 1)
1
p

+ε
⇒ T ∈ Ip ⇒ αn(T ) ≤ C̃

(N + 1)
1
p

7.24 Proposition. — For T ∈ L(l2) with T ((xn)n) = (τnxn)n, Qp(T )p =
∑

i |τi|p.
So T ∈ Ip ⇔ (

∑
i |τi|p) <∞.

Proof. From proposition 7.10, we have αr(T ) = supI⊂N, card(I)=r+1{inf{|τi|, i ∈ I}}.
Thus, T ∈ Ip ⇒ αr(T )→r→∞ 0.
This implies that ∀n ≥ 1, card{i ∈ N such as |τi| ≥ 1

n} <∞, else the sequence of αr(T ) can’t converge
towards 0.
And if

∑
i |τi|p <∞, ∀n ≥ 1, card{i ∈ N such as |τi| ≥ 1

n} <∞ too.
Thus, in both cases, we can reorder the τi by decreasing modulus with a permutation σ, as there is
always a finite amount of τi of modulus higher than 1

n .
We end up with (τσ(i))i, such as |τσ(0)| ≥ |τσ(1)| ≥ |τσ(2)| ≥ . . . ≥ 0.
Thus, αr(T ) = |τσ(r)| and Qp(T )p =

∑
i≥0 |τσ(i)|p =

∑
i≥0 |τi|p.

7.25 Note. Similarly to proposition 7.10, this proposition is also true for lp with 0 < p ≤ ∞. Since this
proposition will be useful when we will look at Hilbert spaces, l2 seemed more appropriate here.

7.26 Proposition. — ∀p ≥ q ≥ 0, ∀T ∈ Iq, T is in Ip and Qp(T ) ≤ Qq(T ).

To prove this proposition, we will need to use a lemma on series of real positive numbers.

7.27 Lemma. For (γn)n ∈ RN
+ with

∑
n γn <∞, ∀β ≥ 1, we have :

(
∑
n≥0

γβn) ≤ (
∑
n≥0

γn)β

Proof. Since
∑

n≥0 γn <∞, (
∑

n≥0 γ
β
n) too because ∃n0 such as ∀n ≥ n0, γn < 1⇒ γβn ≤ γn.

We will look at (
∑

n≥0 γ
β
n)− (

∑
n≥0 γn)β.

For n ≥ 1, we define fn : (x0, . . . , xn) ∈ Rn+1
+ 7→ (xo + . . .+ xn)β − (xβo + . . .+ xβn) ∈ R.

fn is of C∞-class on Rn+1
+ .
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7.3 Operators of type s

We have ∂xifn(xo, . . . , xn) = β.(xo + . . .+ xn)β−1 − β.xβ−1
i ≥ 0, ∀x0, . . . , xn ≥ 0.

Thus, fn(x0, . . . , xn) ≥ fn(x0, . . . , xn−1, 0) ≥ . . . ≥ fn(0, . . . , 0) = 0.
Therefore, 0 ≤ (γo + . . .+ γn)β − (γβo + . . .+ γβn) ≤ (

∑
n≥0 γ

β
n) + (

∑
n≥0 γn)β := M , ∀n ≥ 0.

Since γ0 + . . .+ γn →
∑

n γn and γβ0 + . . .+ γβn →
∑

n γ
β
n , we end up with :

0 ≤ (
∑
n≥0

γβn)− (
∑
n≥0

γn)β ≤M

by dominated convergence.

Proof. We have Qp(T ) = (
∑

r αr(T )p)
1
p and Qq(T ) = (

∑
r αr(T )q)

1
q .

We note γn = αn(T )q ⇒ αn(T )p = γ
p
q
n , and p

q ≥ 1.

Thus, Qp(T ) ≤ Qq(T )⇔ (
∑

n γ
p
q
n ) ≤ (

∑
n γn)

p
q , which is true thanks to lemma 7.27.

7.28 Note. All the Qp are now ordered. For T ∈ L(E,F ), we have :

‖T‖ ≤ . . . ≤ Q2(T ) ≤ . . . ≤ Q1(T ) ≤ . . . ≤ lim
p→0+

(Qp(T )) ≤ ∞

7.3 Operators of type s

7.29 Definition. We define s(E,F ) := ∩p>0Ip(E,F ).
An operator T in s is called a type s operator.

Since Ip are all ideals of L(E,F ), s is an ideal of L(E,F ).
Finite rank operators are all of type s.
In the case of E=F, E Hilbert, s is a *-ideal. T ∈ s⇒ T ∗ ∈ s.
T is of type s⇔

∑
r≥0 αr(T )p <∞, ∀0 < p <∞.

7.30 Definition. We define a metric topology on s(E,F ) with :
Up,ε(T ) := {S ∈ s(E,F ) such as Qp(T − S) ≤ ε} as a fundamental system of neighborhoods of T.

7.31 Proposition. — This topology is well defined as a metric topology.
With this topology, the finite rank operators are dense in s and s is complete.

7.32 Note. We have :

{finite rank} ⊂ s ⊂ . . . ⊂ I1 ⊂ . . . ⊂ I2 ⊂ . . . ⊂ K

7.33 Note. For T ∈ s,
∑

r αr(T )p <∞, ∀0 < p <∞.
Thus, ∀N ≥ 0, ∀0 < p <∞, (N + 1).αN (T )p ≤

∑N
n=0 αn(T )p ≤ Qp(T )p

⇒ αN (T ) ≤ Qp(T )

(N+1)
1
p

, ∀0 < p <∞.

7.34 Proposition. — T ∈ s(E,F )⇔ (αn(T ))n is a rapidly decreasing sequence :
∀p > 0, ∃C > 0 such as αn(T ) ≤ C

(N+1)
1
p
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7.4 Approximation numbers of compact mappings in Hilbert spaces

We will now suppose that E and F are separable complex Hilbert spaces.

7.35 Theorem. Let T ∈ L(E,F ).
- T is compact⇔ αr(T )→r→∞ 0.
- If T is compact, for (λn)n the singular values of T, we have :

λn = αn(T ), ∀n ≥ 0

- If T is compact, then
T ∈ Ip ⇔

∑
n≥0

λpn <∞

Proof.
⇐
If αr(T )→ 0, then we have a sequence of finite rank operators (An)n such as ‖T −An‖ ≤ 2αn(T )⇒
‖T −An‖ → 0⇒ (An)n converges towards T in operator norm.
⇒
If T is compact, let {φn}n,{ψn}n be orthonormal sets of E and F for which :
T (f) =

∑
n λn.〈φn; f〉E .ψn, with (λn)n ∈ RN

+ monotone decreasing towards 0.
By writing x ∈ E as x =

∑
n xn.φn + x⊥, and y ∈ F as y =

∑
n yn.ψn + y⊥ with (xn)n, (yn)n ∈ l2, we

can see T as :
T : ((xn)n, x

⊥)E 7→ ((λn.xn)n, 0)F
Thus, by using arguments from 7.24, we obtain :

∀r ≥ 0, αr(T ) = sup
I⊂N, card(I)=r+1

{inf{λi, i ∈ I}} = λr

Which completes the proof.

This theorem links approximation numbers with singular values. It will be useful to give more
properties to two specific Ip, since it gives new ways to express approximation numbers through the
Hilbert-Schmidt theorem.

7.5 Trace-class ideal

Let H be a separable complex Hilbert space.

7.36 Definition. Let T ∈ L(H) a positive operator. Let {ψn}n be an orthonormal basis of E.
We define Tr(T ) :=

∑
n〈ψn;Tψn〉 ∈ [0,∞], the trace of T.

7.37 Proposition. — Let T ∈ L(H) a positive operator. Then Tr(T ) is independant of the orthonormal
basis chosen.
For S another positive operator, Tr(S + T ) = Tr(S) + Tr(T ).
For λ ≥ 0, Tr(λT ) = λ.Tr(T ).
If U is an unitary operator, then Tr(UTU−1) = Tr(T ).

Proof. Let {φn}n be another orthonormal basis of H. Then :

Trψ(T ) =
∑
n≥0

〈ψn;Tψn〉 =
∑
n≥0

‖
√
Tψn‖2 =

∑
n≥0

(
∑
m≥0

|〈φm;
√
Tψn〉|2)

=
∑
m≥0

(
∑
n≥0

|〈
√
Tφm;ψn〉|2) because

√
T is self-adjoint

=
∑
m≥0

‖
√
Tφm‖2

=
∑
m≥0

〈φm;Tφm〉 = Trφ(T )
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7.5 Trace-class ideal

The linearity of the trace is obvious.
And for U an unitary operator, {U−1ψn}n is another orthonormal basis of H, so

∑
n≥0〈ψn;Tψn〉 =∑

n≥0〈U−1ψn;TU−1ψn〉.

7.38 Definition. An operator T ∈ L(H) is called Trace-class if and only if Tr(|T |) <∞.

7.39 Proposition. If A,B are trace-class, then A+B is trace-class and Tr(|A+B|) ≤ Tr(|A|)+Tr(|B|)

Proof. The polar decomposition theorem gives us U,V,W partial isometries for which :
A+B = U |A+B| and Ker(U) = Ker(A+B) = Ker(|A+B|),
A = V |A| and Ker(V ) = Ker(A) = Ker(|A|),
B = W |B| and Ker(W ) = Ker(B) = Ker(|B|).
Let {ψn}n be an orthonormal basis of H. Let N ≥ 0.
Then,

N∑
n=0

〈ψn, |A+B|ψn〉 =

N∑
n=0

〈ψn, U∗(A+B)ψn〉 ≤
N∑
n=0

|〈ψn, U∗V |A|ψn〉|+
N∑
n=0

|〈ψn, U∗W |B|ψn〉|

And,

N∑
n=0

〈ψn, U∗V |A|ψn〉 ≤
N∑
n=0

‖
√
|A|V ∗Uψn‖.‖

√
|A|ψn‖

≤ (
N∑
n=0

‖
√
|A|V ∗Uψn‖2)

1
2 .(

N∑
n=0

‖
√
|A|ψn‖2)

1
2

≤ Tr(|A|)
1
2 .T r(|A|)

1
2 as {V ∗Uψn}n = {δnφn}, φn an ONB and δn =

∣∣∣∣ 0 if ψn ∈ Ker(V ∗U)
1 else.

≤ Tr(|A|)

Thus, Tr(|A+B|) ≤ Tr(|A|) + Tr(|B|) <∞.

7.40 Proposition. If T is trace-class, then T is compact.
Furthermore, T is in I1 and Tr(|T |) = Q1(T ).
Therefore, ∀T ∈ L(H), Tr(T ) = Q1(T ), and the trace-class operators are exactly the operators in I1.

Proof. Since T is trace-class, Tr(|T |) =
∑

n≥0 ‖
√
|T |ψn‖2 <∞.

Thus, f ∈ H 7→
∑N

n=0〈ψn;
√
|T |f〉.ψn is of finite rank and converges in operator norm towards

√
|T |

:

‖
N∑
n=0

〈ψn;
√
|T |.〉ψn −

√
|T |‖ ≤

∞∑
n=N+1

‖
√
|T |ψn‖2 →N→∞ 0

Thus,
√
|T | is compact, so |T | and T are compact.

The Hilbert-Schmidt theorem gives us an orthonormal set {φn}n and (λn)n ∈ RN
+ monotone decreas-

ing towards 0 such as : |T | =
∑

n λn〈φn; .〉Eφn.
We complete {φn}n by another orthonormal set {Φn}n to obtain an orthonormal basis of H. Every Φn

is in particular in Ker(|T |).
Thus,

Tr(|T |) =
∑
n≥0

〈φn;Tφn〉+
∑
n≥0

〈Φn;TΦn〉 =
∑
n≥0

λn + 0
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7.6 Hilbert-Schmidt ideal

As the (λn)n are the singular values of T, Q1(T ) =
∑

n≥0 αn(T ) =
∑

n≥0 λn = Tr(|T |) < ∞, so T
is in I1(H).
Conversely, if T is in I1(H), then T and |T | are compact. A second use of the Hilbert-Schmidt theorem
gives us : Tr(|T |) =

∑
n≥0 λn = Q1(T ) <∞.

So T is trace-class, and Tr(|T |) = Q1(T ) for any T in L(H).

With this proposition, all the properties found for Q1(T ) transfer to Tr(|T |), and vice-versa. We
have in particular :

7.41 Proposition. — As Q1 is a quasi-norm and Q1(T + S) = Tr(|T + S|) ≤ Tr(|T |) + Tr(|S|) =
Q1(T ) +Q1(S), Q1 is a norm on I1(H).
Thus, (I1(H), Q1) is a Banach space.

By knowing an orthonormal basis of H, and if T is positive or if |T | is easily computable, we can
try to compute Tr(|T |) in order to see if T is in I1 or not.
This can be used to prove that T is compact as proving that T is in a certain Ip is sometimes easier.

7.42 Proposition. — Let T ∈ I1(H). Let {ψn}n be an orthonormal basis of H.
Then, Tr(T ) :=

∑
n≥0〈ψn;Tψn〉 exists, and doesn’t depend on the orthonormal basis chosen.

We have in particular that |Tr(T )| ≤ Tr(|T |).

Proof. Let N ≥ 0. We have U a partial isometry such as T = U |T |. This gives us :

|
N∑
n=0

〈ψn, Tψn〉| ≤
N∑
n=0

|〈ψn, U |T |ψn〉| ≤
N∑
n=0

‖
√
|T |U∗ψn‖.‖

√
|T |ψn‖

≤ (

N∑
n=0

‖
√
|T |U∗ψn‖2)

1
2 .(

N∑
n=0

‖
√
|T |ψn‖2)

1
2

≤ Tr(|T |)
1
2 .T r(|T |)

1
2 with the same argument as in

≤ Tr(|T |) <∞

The proof of the independance of the orthonormal basis is the same as the one for Tr(|T |).

With the trace-class ideal properly defined and studied, we can now introduce the Hilbert-Schmidt
ideal. The study of approximation numbers is already of a great help here.

7.6 Hilbert-Schmidt ideal

7.43 Definition. An operator T ∈ L(H) is called Hilbert-Schmidt if and only if Tr(TT ∗) <∞.

7.44 Proposition. — Let {ψn}n be an orthonormal basis of H. We have :

Tr(TT ∗) =
∑
n≥0

〈ψn, TT ∗ψn〉 =
∑
n≥0

‖Tψn‖2

Thus, if T is an Hilbert-Schmidt operator, T is compact, T is in I2(H), and :

Q2(T ) =
√
Tr(TT ∗) =

√
Q1(TT ∗)
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As the converse is true, the Hilbert-Schmidt operators are exactly the operators in I2(H).
We also have that :

Q2(A+B)2 = Tr((A+B)(A+B)∗) =
∑
n≥0

‖(A+B)ψn‖2 ≤
∑
n≥0

‖Aψn‖2 +
∑
n≥0

‖Tψn‖2

≤ Tr(AA∗) + Tr(BB∗)

≤ Q2(A)2 +Q2(B)2

Thus, the quasi-norm Q2 is in fact a norm in I2(H)

7.45 Note. 〈T, S〉I2 = Q1(TS∗) is an inner product on I2(H).

7.46 Theorem. — Let A ∈ L(H).
A ∈ I1(H)⇔ A = BC with B,C ∈ I2(H).

Proof.
⇐
If A = BC with B,C ∈ I2(H), since 1

2 + 1
2 = 1

1 , then A is in I1(H).
⇒
If A is in I1, for λn the singular values of A,

√
λn are the singular values of

√
|A|.

Thus, Q2(
√
|A|)2 =

∑
n≥0 λn = Q1(A) <∞, so

√
|A| ∈ I∈.

The polar decomposition theorem gives us a partial isometry U such as A = U.|A| = U
√
|A|.
√
|A|. By

choosing B = U
√
|A| and C =

√
|A|, we complete the proof.

In certain Hilbert spaces, belonging to the I2(H) can be tested with criterias that do not involve the
calculation of the singular values or of Q2. These criterias are really useful to prove the compacness
of certain operators, or their belonging to I1 or s, especially in RKHS like Bergman and Hardy spaces.

7.47 Theorem. — Let (M,µ) be a mesured space and H = L2(M,dµ).
Then, A ∈ L(H) is Hilbert-Schmidt⇔∃K ∈ L2(M×M,dµ⊗dµ) such as (Af)(x) =

∫
K(x, y)f(y)dµ(y),

∀f ∈ L2(M,dµ).
We also have : ‖A‖2 =

s
|K(x, y)|2dµ(x)dµ(y).

7.48 Corollary.
A ∈ L(H) is trace-class⇔∃K1,K2 ∈ L2(M×M,dµ⊗dµ) such as (Af)(x) =

∫
(
∫
K1(x, z)K2(z, y)dµ(z))f(y)dµ(y),

∀f ∈ L2(M,dµ).

With the study of Hilbert spaces, approximation numbers, and Ip ideals, we can now go back to
Hardy and Bergman spaces and study multiple properties of certain operators, especially multiplica-
tion and composition operators.

8 Various compact operators in B2 and H2 spaces

8.1 Hilbert-Schmidt test for B2 and H2

8.1 Theorem. Hilbert-Schmidt test for composition operators Let ϕ : D → D, holomorphic. ϕ can be
extended as a continuous function from D to D. We have the following criteria :

Cϕ ∈ I2(H2(D)) ⇔
∫
∂D
KH2(D)(ϕ(z), ϕ(z))|dz| =

∫ 2π

0

1

1− |ϕ(eit)|2
dt <∞

Cϕ ∈ I2(B2(D)) ⇔
x

D

KB2(D)(ϕ(z), ϕ(z))|dz| =
∫ 1

0

∫ 2π

0

1

(1− |ϕ(reit)|2)2
rdrdt <∞
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8.1 Hilbert-Schmidt test for B2 and H2

Proof.
We will do the proof for the Hardy case. The proof for the Bergman case is completely similar.
Let {ψn}n be an orthonormal basis of H2(D). These functions are holomorphic on D and can be
extended as L2 functions on D.
We have :

Cϕ ∈ I2(H2(D))⇔ Q2(Cp) <∞⇔
∑
n≥0

‖Cϕψn‖2 <∞

⇔
∑
n≥0

∫ 2π

0
ψn(ϕ(eit)).ψn(ϕ(eit))dt <∞

⇔
∫ 2π

0

∑
n≥0

ψn(ϕ(eit)).ψn(ϕ(eit))dt <∞

⇔
∫ 2π

0
KH2(D)(ϕ(eit), ϕ(eit))dt =

∫ 2π

0

1

1− |ϕ(eit)|2
dt <∞

This criteria will be useful in many cases as it gives us properties on Cϕ when checking the inte-
grability of 1

1−|φ(z)|2 on certain domains.

8.2 Note. If we also take a multiplication operator Mw with w ∈ Hol(D) ∩ L∞(D), we can generalize
the property to weighted composition operators Mw ◦ Cϕ :

Mw ◦ Cϕ ∈ I2(H2(D)) ⇔
∫
∂D
|w(z)|2.KH2(D)(ϕ(eit), ϕ(eit))|dz| <∞

Mw ◦ Cϕ ∈ I2(B2(D)) ⇔
x

D

|w(z)|2.KB2(D)(ϕ(z), ϕ(z))|dz| <∞

8.3 Note. For Ω an open simply connected space, ϕ : Ω→ Ω, holomorphic, φ : Ω→ D a biholomorphism,
we have KH2(Ω)(z; z) = |φ′(z)|.KH2(D)(φ(z);φ(z)) and KB2(Ω)(z; z) = |φ′(z)|2.KB2(D)(φ(z);φ(z))
- Thus, we can generalize the property to any Hardy or Bergman space :

Cϕ ∈ I2(H2(Ω)) ⇔
∫
∂Ω
KH2(Ω)(ϕ(z), ϕ(z))|dz| <∞

Cϕ ∈ I2(B2(Ω)) ⇔
x

Ω

KB2(Ω)(ϕ(z), ϕ(z))|dz| <∞

- On spaces Ω where a biholomorphism φ can be computed, we can compute KH2(Ω) and apply the
Hilbert-Schmidt test to composition operators or weighted composition operators on these spaces that
have a simple expression.

8.4 Proposition. Compactness of multiplication operators
A non-zero multiplication operator Mw is never compact in B2,H2.

Proof. If w is non constant, Im(w) is not discrete. If w ≡ λ, then λ is an eigenvalue of infinite
multiplicity for Mw.

8.5 Proposition. — For Ω1 ⊂ Ω2 with |Ω1| < ∞ and d(Ω1,Ω
C
2 ) > 0, then the restriction operator

I : B2(Ω2) → B2(Ω1)
f 7→ f |Ω1

is of type s.

A similar version works in Hardy spaces with |∂Ω1| instead of |Ω1|.
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8.2 Compactness criteria in H2 and B2

Proof. For f ∈ B2(Ω2), since
s

Ω1
|f(x + iy)|2dxdy ≤

s
Ω2
|f(x + iy)|2dxdy, I is a bounded operator

and ‖I‖ ≤ 1. Let {ψn}n be an orthonormal basis of B2(Ω2).
- We will first prove that I is in I2.
We have :

∑
n≥0 ‖Iψn‖2B2(Ω1) =

∑
n≥0(

s
Ω1
|ψn(x+ iy)|2dxdy) ≤

∑
n≥0 |Ω1|. supz∈Ω1

(|ψn(z)|2).

And
∑

n |ψn(z)|2 =
∑

n |〈kz, ψn〉|2 = ‖kz‖2 ≤ C
d(z,ΩC2

≤ C
d(Ω1,ΩC2 )

, with C > 0 a constant.

Thus,
∑

n≥0 ‖Iψn‖2 ≤ supz∈Ω1
(
∑

n |Ω1||ψn(z)|2) ≤ |Ω1|. C
d(Ω1,ΩC2 )

<∞, and I is in I2.

- Now, for any n > 0 we can build Ω1 = Ωn,0 ⊂ . . . ⊂ Ωn,n = Ω2, such as :
|Ωn,i| <∞ and d(Ωn,i,Ω

C
n,i+1) > 0, ∀0 ≤ i ≤ n− 1.

By defining
In,i : B2(Ωn,i+1) → B2(Ωn,i)

f 7→ f |Ωn,i
, each In,i is in I2 and I = In,0.In,1 . . . In, n− 1.

Thus, I ∈ I 2
n

, ∀n > 0⇒ I is of type s.

8.2 Compactness criteria in H2 and B2

8.6 Theorem. Let ϕ : D→ D, holomorphic.

ThenCϕ is compact onH2(D)⇔∀(fn)n ∈ H2(D)N such as
‖fn‖H2 is uniformly bounded by a constant C > 0
fn → 0 uniformly on every compact

⇒ ‖Cϕ(fn)‖H2 → 0.
We also have the same equivalence for B2(D).

Proof. We will do the proof for the Hardy space case. The proof for the Bergman space case works
the same way.
⇐= Let (fn)n ∈ H2(D)N with ‖fn‖H2 ≤ 1.
Then, (fn)n is uniformly bounded on every compact.
Thus, by a diagonal process on the B(0, 1− 1

m), we have a subsequence (fnk)k that converges uni-
formly on every compact towards f that is holomorphic.
We must show that f ∈ H2.
Let ε > 0 and 0 < r < 1. Since we also have f2

nk
that converges uniformly on every compact towards

f2, ∃k0 such as : ∀k ≥ k0, ‖f2
nk
− f2‖

L∞(B(0, 1+r
2

)
≤ ε.

Thus, ‖|fnk |2 − |f |2‖L∞(B(0, 1+r
2

)
≤ ε⇒ |f |2 ≤ |fnk |2 + ε on B(0, 1+r

2 .

We obtain : 1
2π

∫ 2π
0 |f(reit|2dt ≤ 1

2π

∫ 2π
0 |fnk(reit|2dt+ 1

2π

∫ 2π
0 εdt ≤ 1 + ε

⇒ sup 0 < s < 1( 1
2π

∫ 2π
0 |f(seit|2dt) ≤ 1 + ε.

So f is in H2, and ‖f‖H2 ≤ 1.
Thus, (fnk − f)k is bounded by 2 in H2-norm and converges towards 0 uniformly on every compact.
So ‖Cϕ(fnk − f)‖H2 → 0, which implies that (Cϕ(fnk))k converges towards Cϕ(f) in H2-norm by the
hypothesis.
Thus, (Cϕ(fn)n is a relatively compact sequence in H2, so Cϕ is compact.
=⇒ Let (fn)n ∈ H2(D) with ‖fn‖H2 ≤ C, for a C > 0, and fn → 0 uniformly on every compact.
Suppose that ∃ε > 0 such as the set {n with ‖Cϕ(fn)‖H2 ≥ ε} is infinite.
We have then a subsequence (fnk)k with ‖Cϕ(fnk)‖H2 ≥ ε, ∀k ≥ 0.
Since Cϕ is compact, we have (Cϕ(fnkm )m that converges towards g in H2-norm.
Thus, ‖g‖H2 ≥ ε. But as convergence in H2-norm implies uniform convergence on every compact, we
must have g ≡ 0, contradiction.
Thus, ∀ε > 0, Card({n with ‖Cϕ(fn)‖H2 ≥ ε}) <∞.
So, ∀ε > 0, ∃n0 > 0 such as : ∀n ≥ n0, ‖Cϕ(fn)‖H2 < ε, which implies that Cϕ(fn) converges towards
0 in H2-norm.

8.7 Note. This theorem can also be extended to any open simply connected space Ω.
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8.3 Relationship between compactness of Cϕ and shape of Im(ϕ)

8.3 Relationship between compactness of Cϕ and shape of Im(ϕ)

8.8 Proposition. — Let ϕ : D→ D be holomorphic, with its continuous extension to D.
If µ({θ ∈ [0, 2π[ such as ϕ(eiθ) ∈ ∂D}) > 0, then Cϕ isn’t compact in H2(D).

Proof. (zn)n is a sequence of functions in H2 of norm 1 that uniformly converges on every compact
towards 0.
We have : 1

2π

∫ 2π
0 |p(e

it)|2ndt ≥ µ({θ ∈ [0, 2π[ such as ϕ(eiθ) ∈ ∂D}) := c.
Thus, Cϕ(zn) doesn’t converge in H2-norm towards 0, and theorem 8.6 tells us that Cϕ isn’t compact.

8.9 Proposition. — Let Ω be an open simply connected space and ϕ : Ω→ Ω holomorphic.

If d(Im(ϕ),ΩC) > 0 and
|∂Ω| <∞ then Cϕ ∈ s(H2(Ω)).
|Ω| <∞ then Cϕ ∈ s(B2(Ω)).

Proof. The proof will focus on the Hardy space case. The proof for the Bergman space case is identical.
We have :

∫
∂ΩKH2(Ω)(ϕ(z), ϕ(z))|dz| ≤ |∂Ω|.‖KH2(Ω)‖L∞(Im(ϕ)×Im(ϕ))

<∞, so Cϕ is in I2(H2(Ω)).

Let φ : D → Ω a biholomorphism. We then have : d(Im(φ ◦ ϕ ◦ φ−1),DC) > 0. So ∃r > 0 such as
Im((1 + r).φ ◦ ϕ ◦ φ−1) ⊂ D.

Let n > o. Let γn(z) := 1
1+r

1
n .z, Γn := φ−1 ◦ γn ◦ φ, θ(z) := (1 + r).φ ◦ ϕ ◦ φ−1(z).

We have γn(D) ⊂ D so Γn(Ω) ⊂ Ω, and θ(D) ⊂ D. Thus, the composition operators CΓn and Cφ−1◦θ◦φ
are well defined and bounded.
Then φ ◦ ϕ ◦ φ−1 = γn ◦ . . . ◦ γn ◦ ((1 + r).φ ◦ ϕ ◦ φ−1) and ϕ = Γn ◦ . . . ◦ Γn ◦ (φ−1 ◦ θ ◦ φ).
We have d(Im(Γn,Ω

C) > 0 and d(Im(φ−1 ◦ θ ◦ φ),ΩC) > 0 . So CΓn , Cφ−1◦θ◦φ ∈ I2(H2(Ω)).
Thus, Cϕ ∈ I 2

n+1
(H2(Ω)) ∀n > 0⇒ Cϕ ∈ s(H2(Ω)).

8.10 Note. In the case of D, we know that ϕ : D→ D holomorphic, is extendable continuously to D, and
if the image of the boundary of D by ϕ is included in D, then Cϕ is an operator of type s in both Hardy
and Bergman spaces.
We also know that if µ({θ ∈ [0, 2π[ such as ϕ(eiθ) ∈ ∂D}) > 0, then Cϕ is not compact in H2(D).
Thus, the functions ϕ for which the compactness properties of Cϕ are unclear are only those for which
ϕ(∂D) ∩ ∂D is of measure 0.

8.11 Proposition. — Let f, g ∈ Hol(D), with g injective and f(D) ⊂ g(D).
- If g is in H2(D) or B2(D), then so does f.
Let’s suppose that f(D), g(D) ⊂ D.
- If Cg is in Ip(H2(D)) or Ip(B2(D)) for a p > 0, then so does Cf .

Proof. Since g is injective, g|g(D)
D is a biholomorphism and possesses an inverse h : g(D) → D. Since

f(D) ⊂ g(D), we have f = g ◦ (h ◦ f), with h ◦ f : D→ D, holomorphic.
Thus, Ch◦f is a bounded operator in H2(D) and B2(D), which allows us to end the proof.

Thus, for Ω ⊂ D who has a biholomorphism g : D → Ω that defines a composition operator with
good compact properties in H2(D) or B2(D), for every f : D → Ω holomorphic, Cf shares these
properties.
So the shape of the image of f can automatically induce compactness properties for Cf .

8.12 Corollary. Let f, g ∈ Hol(D), with g injective and f(D) ⊂ g(D).
- If f isn’t in H2(D) or B2(D), then so does g.
Let’s suppose that f(D), g(D) ⊂ D.
- If Cf isn’t in Ip(H2(D)) or Ip(B2(D)) for a p > 0, then so does Cg.
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8.4 Lens maps and regular polygons in D

8.13 Proposition. — Let 0 < λ < 1. Let ϕ : z ∈ D 7→ λz + (1− λ) ∈ D.
Then Cϕ isn’t compact in H2(D).

Proof. ∀0 < r < 1, we define fr(z) :=
KH2(D)(r,z)

sqrtKH2(D)(r,r)
= sqrt1−r

1−rz .

We have ‖fr‖H2 = 1, and fr →r→1− 0 uniformly on every compact.
And ‖fr ◦ ϕ‖H2 = 1+r

1−r+2λr →r→1−
1
λ . Thus, Cϕ(fr) doesn’t converge to 0 in H2-norm for r → 1−.

Theorem 8.6 tells us that Cϕ isn’t compact.

8.14 Note. - The shape of Im(ϕ) is a disc of radius λ centered in (1−λ). ϕ is a biholomorphism between
D and that disc, and ϕ(∂D) only touches ∂D for z=1.
Thus, we have functions who touch the boundary of the disc in an unique point but who give a non-
compact composition operator.
- By composing these ϕ with rotations, we can obtain every disc included in D that has one tangential
point with ∂D.
Corollary 8.12 tells us that for any f : D → D holomorphic injective with Im(f) that contains a disc
tangent to ∂D, Cf isn’t compact in H2(D).

8.15 Proposition. — For f(z) = 1−z
2 , Im(z) = B(1

2 ,
1
2), so remark 8.14 tells us that Cf isn’t compact

in H2(D).
However, f ◦ f(z) = 1+z

4 , so Im(f ◦ f) = B(1
4 ,

1
4) and proposition 8.5 tells us that Cf ◦ Cf = Cf◦f is of

type s.
Thus, we have a non-compact composition operator whose square possesses great compact properties.

8.16 Proposition. — - ∀0 < α < 1
2 , fα : z 7→ (1+z

1−z )α is injective and in H2(D).
The map z 7→ 1+z

1−z is a biholomorphism from D to the half-plane {z such as Re(z) > 0}. Thus, the image
of D by fα is {z such as |arg(z)| < πα}, an angular sector with a vertex angle of πα < π

2 .
Thus, by composing fα with roations and translations, and by using property 8.11, we obtain :
For any g inHol(D) with Im(g) included in an angular sector with vertex angle lower than π

2 , g ∈ H2(D).
- For α = 1

2 , fα /∈ H2(D).
Thus, for any Ω open and simply connected, that contains an angular sector with vertex angle of π2 , and
g : D→ Ω a biholomorphism, g /∈ H2(D).
- For 0 < α < 1, fα ∈ B2(D), and for α = 1, fα /∈ B2(D).
Thus, we have similar properties for B2(D) but with angular sectors of vertex angler either higher or
lower than π.

8.4 Lens maps and regular polygons in D

8.17 Definition. Let 0 < α < 1. Let σ : z ∈ D 7→ 1+z
1−z ∈ {Re(z) > 0} a biholomorphism.

We define ψα(z) := σ−1(σ(z)α) = σ(z)α−1
σ(z)α+1 .

The image of D by z 7→ σ(z)α is {z such as |arg(z)| < πα}. Thus, the image of ψα is a lens-shaped
region of D, symmetric to the horizontal axis, that touches ∂D in 1 and -1. ψα is called a lens map.
We denote by Lα the image of ψα.

8.18 Proposition. — ∀0 < α < 1, Cψα ∈ I2(H2(D)).

Proof. The main issues for the integrability of 1
1−|ψα(eit)|2 are in ±1. By symmetry, we will only look

near +1.
We have σ(eit) = 1+eit

1−eit = e−i
t
2 +ei

t
2

e−i
t
2−ei

t
2

= i.cotan( t2), and ψα(z) = 1− 2
σ(z)α+1 .

For |t| < π
2 , |σ(eit)| = |cotan( t2 | =

1
| tan( t

2
)| ≤

2
|t| .

⇒ |1− ψα(eit)| ≥ 2
|σ(eit)|α+1

≥ C.|t|α.

Since ψα(eit) approaches +1 non-tangentially to ∂D, we can also obtain that for t near 0, 1 −
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|ψα(eit)|2 ≥ C̃.|1− ψα(eit)|, for a C̃ > 0.
Thus, 1

1−|ψα(eit)|2 ≥
1

C.C̃
. 1
|t|α for t near 0, so this function is integrable near 0.

Therefore, 1
1−|ψα(eit)|2 on ∂D and the Hilbert-Schmidt critera in H2 concludes the proof.

8.19 Corollary. Let f : D→ D with Im(f) ⊂ Lα for a 0 < α < 1.
Then, Cf ∈ I2(H2(D)).

8.20 Theorem. Let Γ be a polygon inscribed in D. Let f : D→ D with Im(f) ⊂ Γ.
Then, Cf ∈ I2(H2(D)).

Proof. Let Γ be a polygon inscribed in D. We will suppose that one of the vertexes of Γ is +1.
Let φ : D→ Γ̊ a biholomorphism. φ extends to ∂D from ∂Γ as an homeomorphism.
By composing φ with a biholomorphism of the disc, we can send φ(1) into 1. Thus, we will suppose
at φ(1) = 1.
The map ψ := 1+φ

2 will then fix 1 and send D into a lens Lα, α near to 1.
Thus, by corollary 8.19, Cψ ∈ I2(H2(D)).
When t is near 0, φ(eit) and ψ(eit) approach +1 non-tangentially to ∂D.
Thus, 1− |ψ(eit)|2 |1− ψ(eit)| = |1−φ(eit)

2 | 1−|φ(eit)|2
2 for t near 0.

Since Cψ is in I2, 1
1−|ψ(eit)|2 is integrable for t near 0, so 1

1−|φ(eit)|2 is integrable for t near 0 too.

Thus, 1
1−|φ(eit)|2 is integrable over small intervals centered around the preimage of each vertex of Γ,

who are exactly all the points where |φ(eit)| = 1. This means that this function is integrable over
[0, 2π[.
Therefore, Cφ ∈ I2(H2(D)).
We then use proposition 8.11 to conclude the proof.

9 Composition operators on Hp(Ω), Bp(Ω)

9.1 Existence of compact composition operators on Hp(Ω), Bp(Ω)

9.1 Definition. Let 0 < p < ∞. Let Ω be an open and simply connected space, and ψ : D → Ω a
biholomorphism. We define : Bp(Ω) := {f ∈ Hol(Ω) such as

s
Ω |f(z)|p|dz| < ∞} Hp(Ω) := {f ∈

Hol(Ω) such as supr→1−(
∫
ψ(∂B(0,r)) |f(z)|p|dz| <∞}.

Hp(Ω) and Bp(Ω) are Banach spaces. They are Hilbert spaces for p = 2.
For any q > 0, ψ′q : D→ C can be well defined.
Thus, Up : f ∈ Bp(Ω) 7→ (f ◦ ψ).(ψ′)

2
p ∈ Bp(D) and Vp : f ∈ Hp(Ω) 7→ (f ◦ ψ).(ψ′)

1
p ∈ Hp(D) are

unitary maps.

For ϕ : Ω → Ω holomorphic and φ := ψ−1 ◦ ϕ ◦ ψ, we define : ABp,ϕ := UpCϕU
−1
p = M

( ψ′
ψ′◦φ )

2
p
Cφ

and AHp,ϕ := VpCϕV
−1
p = M

( ψ′
ψ′◦φ )

1
p
Cφ.

, we can then study properties of Cϕ on Hp(Ω) (resp Bp(Ω)) by studying AHp,ϕ on Hp(D) (resp
ABp,ϕ on Bp(D)).

We can now introduce the main theorem of this section, and give the key points of its proof.

9.2 Theorem. Existence of compact composition operators in Bp(Ω),Hp(Ω)
There exist compact composition operators in Bp(Ω)⇔ |∂Ω| is finite.
There exist compact composition operators in Hp(Ω)⇔ |Ω| is finite.
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9.1 Existence of compact composition operators on Hp(Ω), Bp(Ω)

For ϕ : Ω → Ω holomorphic, instead of focusing on Cϕ, we will be focusing on ABp,ϕ and AHp,ϕ,
in order to go back to D.

9.3 Note. |Ω| <∞⇔
s

D |ψ
′(z)||dz| <∞⇔ ψ′ ∈ B1(D)

|∂Ω| <∞⇔ supr→1−(
∫
∂B(0,r) |ψ

′(z)||dz|) <∞⇔ ψ′ ∈ B1(D)

Thus, we can trade the finiteness of the area (resp border) of Ω by ψ′ belonging to a certain Bergman
(resp Hardy) space.
This condition does also not depend on the biholomorphism ψ chosen.

The next propositions and theorems will be similar for Hp(Ω) and Bp(Ω). Thus, they will only be
stated for Hp(Ω) to reduce redundancy.

9.4 Theorem. Let ϕ : Ω→ Ω, holomorphic.
If Cϕ is bounded in Hp(Ω) for a 0 < p <∞, it is bounded in Hp(Ω) for all 0 < p <∞.

9.5 Note.
- The proof of this theorem focuses on AHp,ϕ and shows that for any 0 < p, q < ∞, ‖AHp,ϕ‖pHp(D) =

‖AHp,ϕ‖qHq(D).

9.6 Lemma. Let ϕ : Ω→ Ω, holomorphic.
- AHp,ϕ is compact in Hp(D)⇐⇒ ∀(fn)n ∈ Hp(D)N such as :
‖fn‖Hp is uniformly bounded by a constant C > 0
fn → 0 uniformly on every compact

, we have ‖AHp,ϕ(fn)‖Hp → 0.

- If AHp,ϕ is compact, then µ(∂D ∩ ϕ(D)) = 0.
We use the family {zn}n and the first part of the lemma to prove this part.
- Cϕ is compact in Hp(Ω) for a 0 < p <∞⇔ it is compact in Hp(Ω) for all 0 < p <∞.

9.7 Note.
- We can now focus on H2(Ω) and use its inner product and RKHS properties to study boundedness and
compactness of composition operators.
- We can prove the left part of the main theorem :
⇐= If |Ω| is finite, constant functions are in H2(Ω). Thus, ∀w ∈ Ω, Cw : f ∈ H2(Ω) 7→ f(w) ∈ H2(Ω)
is bounded. Cw being a finite rank operator, it is compact.
- We are now left with the right part of the theorem to prove, in the case p=2.

9.8 Theorem. Let Ω open and simply connected, and ψ : D→ Ω a biholomorphism.
If H2(Ω) contains a compact composition operator, then ψ′ ∈ H1(D).

9.9 Lemma. Let ϕ : Ω→ Ω, holomorphic, and φ := ψ−1 ◦ ϕ ◦ ψ.
Let KH2(D) be the reproducing kernel of H2(D). ∀z ∈ D, we have kH

2(D)
z (.) = KH2(D)(z, .) ∈ H2(D).

If AH2,ϕ is bounded in H2(D), then A∗H2,ϕ(k
H2(D)
z ) = ( ψ′

ψ′◦φ)
1
2
(z).k

H2(D)
φ(z) .

Proof. For any f ∈ H2(D), we have : 〈A∗H2,ϕ(k
H2(D)
z ), f〉 = 〈kH

2(D)
z , AH2,ϕ(f)〉 = AH2,ϕ(f)(z).

And AH2,ϕ(f)(z) = ( ψ′

ψ′◦φ)
1
2
(z).f(φ(z)) = 〈( ψ′

ψ′◦φ)
1
2
(z).k

H2(D)
ϕ(z) , f〉, by using the properties of kH

2(D)
w .

We will now prove theorem 9.8 when ϕ : Ω→ Ω has a fix point. (φ = ψ−1◦ϕ◦ψ has a fix point too)

Proof. Theorem 9.8
Let ϕ : Ω→ Ω holomorphic such as Cϕ is compact in H2(Ω).
Suppose that we have a ∈ Ω such as ϕ(a) = a.
For b := ψ−1(a), we have φ(b) = b.
As Cϕ is compact, ϕ can’t be bijective, so φ is also not bijective. Lemma 9.9 gives us : A∗H2,ϕ(k

H2(D)
b ) =
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( ψ′

ψ′◦φ)
1
2
(b).k

H2(D)
φ(b) = 1.k

H2(D)
b . Thus, 1 is an eigenvalue of A∗H2,ϕ ⇒ 1 ∈ σ(AH2,ϕ).

Since Cϕ is compact in H2(Ω), AH2,ϕ is compact in H2(D). So ∃f ∈ H2(D) such as AH2,ϕ(f) = f .
For g := f

(ψ′)
1
2

, we have g ◦ φ = g.

Since φ : D → D is holomorphic, non- bijective, and fixes b, corollary 5.8 tells us that φn := φ ◦ . . . φ
converges uniformly on every compact towards the constant function b.
So g(z) = g(φn(z)), ∀n > 0, ∀z ∈ D⇒ g(z) = g(b), ∀z ∈ D⇒ g ≡ g(b).
We end up with f = g(b).(ψ′)

1
2 ∈ H2(D). As f 6= 0, we have g(b) 6= 0 and (ψ′)

1
2 ∈ H2(D).

Thus, ψ′ ∈ H1(D).

The following theorem will complete the proof of theorem 9.8. This will also complete the proof
of the main result of this section.

9.10 Theorem. Let Ω be an open and simply connected space. Let ϕ : Ω→ Ω holomorphic.
If Cϕ is compact in H2(Ω), then ϕ has a fix point in Ω.

However, proving theorem 9.10 is the most difficult point of the section2.

9.2 Other properties for composition operators

We can now use the main theorem of section 9.1, as well as some sub-theorems, in order to obtain
interesting results for elements seen in previous parts.

9.11 Proposition. —
∀ϕ : {Re(z) > 0} → {Re(z) > 0} holomorphic, we have

∫ +∞
0

∫ +∞
−∞

1
4πRe(ϕ(x+iy))2dxdy = +∞

and supr→0+(
∫ +∞
−∞

1
2Re(ϕ(r+iy))dy) = +∞.

∀ϕ : {|Im(z)| < π
2 } → {|Im(z)| < π

2 } holomorphic, we have
∫ +∞
−∞

∫ π
2

−π
2

1
4π cos(Im(ϕ(x+iy)))2dxdy = +∞

and supr→π
2
−(
∫ +∞
−∞

1
2 cos(Im(ϕ(x+ir))) + 1

2 cos(Im(ϕ(x−ir)))dx) = +∞.

Proof. Since Ω1 and Ω2 have an infinite area and an infinite border, their corresponding Hardy and
Bergman spaces hold no compact composition operators.
Thus, they hold no I2 composition operators neither.
Thus, the Hilbert-Schmidt criteria from 8.3 must always fail.
By using the expression of the Reproducing Kernels computed in section 2.2, we obtain the desired
result.

9.12 Theorem. Let Ω an open and simply connex space, ψ : D → Ω a biholomorphism, ϕ : Ω → Ω
holomorphic, and φ := ψ−1 ◦ ϕ ◦ ψ.
- If φ has a fix point α and if AH2,ϕ is bounded on H2(D), then {φ′(α)n ,n > 0}∪{1} are in the spectrum
AH2,ϕ).
If AH2,ϕ) has an eigenvalue, then it is of the form φ′(0)n for a n ≥ 0, and has a multiplicity of 1. - If
AH2,ϕ is compact on H2(D), then φ has an unique fix point α and {φ′(α)n ,n > 0} ∪ {0, 1} = σ(AH2,ϕ).

Proof. We conjugate φ by a biholomorphism of the disc to send α to 0.
We look at AH2,ϕ(zn)(w) = ψ′

ψ′◦φ)
1
2 (w).φ(w)n.

As we have φ(0) = 0, the Taylor series of this function in 0 begins with ( ψ′(0)
ψ′◦φ(0))

1
2 .φ′(0)n).zn =

φ′(0)n.zn.
Thus, the matrix of AH2,ϕ in the orthonormal basis {zn} is lower triangular with φ′(0)n in the diago-
nal.

2See [9], Hardy spaces that support no compact composition operators, p.62-89.
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Thus, the matrix of A∗H2,ϕ in the orthonormal basis {zn} is upper triangular with φ′(0)n in the diago-
nal.
So φ′(0)n is an eigenvalue for A∗H2,ϕ, ∀n > 0. 1 is also an eigenvalue of A∗H2,ϕ with k

H2(D)
0 as an

eigenvector.
So φ′(0)n is in σ(AH2,ϕ), ∀n > 0, as well as 1.
Lastly, if AH2,ϕ(f) = λ.f , then for g = f

(ψ′)
1
2

we have g holomorphic and g ◦ φ = λ.g.

Koenigs Theorem in 5.9 tells us that λ = φ′(0)n for a n ≥ 0 and that this eigenvalue is of multiplicity
one.

9.13 Theorem.
Let Ω an open and simply connex space, ϕ : Ω→ Ω holomorphic, with Cϕ compact on H2(Ω).
1) ϕ has an unique fix point α ∈ Ω, and σ(Cϕ) = {ϕ′(α)n, n > 0} ∪ {0, 1}.
∀n ≥ 0, ϕ′(α)n is an eigenvalue of multiplicity 1. For σ an eigenvector of ϕ′(α), σn is an eigenvector of
ϕ′(α)n.
2) There exists c>0 such as for αr(Cϕ) the r-th approximation number of Cϕ, we have : αr(Cϕ) ≥ e−c.r.

Proof. 1) As Cϕ compact on H2(Ω), AH2,ϕ is compact on H2(D). We can then apply theorem 9.12 to
get all the desired properties on Cp as it is a conjugated of AH2,ϕ by an unitary map.
2) Since Cϕ is compact, ϕ can’t be bijective. Thus, the generalized Koenigs theorem tells us that
|ϕ′(α)| < 1.
This means that the sequence of |ϕ′(α)|n is monotone decreasing towards 0.
As the multiplicity of these eigenvalues is 1, their associated eigenspace is of dimension 1.
By looking at the subspace engendered by the sum of the eigenspaces and at its orthogonal, we can

show that ∀r ≥ 0, αr(Cϕ) ≥ |ϕ′(α)|r = e
−ln( 1

ϕ′(α)| .r.

9.14 Note. We have a good amount of information on the eigenfunctions of ϕ with Koenigs theorem.
For Cϕ compact and σ an eigenfunction, σn must be in H2(Ω).
Thus, if σ grows to∞ near some points of Ω, then its growth rate near such a point must be lower than
the growth rate of every 1

z
1
n

near 0.
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